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Unsupervised methods

X ∈ Rn×d

Supervised methods

X ∈ Rn×d, Y ∈ Rn×m

• Anomaly detection

• Clustering

• Blind signal separation

• Text mining

• Regression

• Pattern recognition

• Time series forecasting

• Speech recognition

• Classification • Classification
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ML’s algos:
runtime = O(poly(size)) = O(poly(n, d))...

... but size = O(2time)... ⇒ problem!

We need Quantum Machine Learning!
runtime = O(polylog(size))

[HHL09] ...
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Takeaways

• There is an efficient quantum procedure for supervised
dimensionality reduction: Quantum Slow Feature
Analysis

• There is an efficient quantum procedure for supervised
classification and distance calculation: Quantum
Frobenius Distance Estimator .

• There is a new efficient quantum procedure for
unsupervised classification: q-means

• We simulate quantum algorithm on real data: they work!
• QRAM based.



1 - QRAM
Let X ∈ Rn×d. There is a quantum algorithm that

|i⟩ |0⟩ → |i⟩ |xi⟩ |xi⟩ = ∥xi∥−1 |xi⟩

1√∑n
i=0 ∥xi∥

2

n∑
i=0

∥xi∥ |i⟩ |xi⟩

• Execution time: O(log nd)
• Preparation time: O(nd log nd)
• Size: O(nd log nd)



1 - QRAM
Let X ∈ Rn×d. There is a quantum algorithm that

|i⟩ |0⟩ → |i⟩ |xi⟩ |xi⟩ = ∥xi∥−1 |xi⟩

1√∑n
i=0 ∥xi∥

2

n∑
i=0

∥xi∥ |i⟩ |xi⟩

• Execution time: O(log nd)
• Preparation time: O(nd log nd)
• Size: O(nd log nd)



1 - QRAM
Let X ∈ Rn×d. There is a quantum algorithm that

|i⟩ |0⟩ → |i⟩ |xi⟩ |xi⟩ = ∥xi∥−1 |xi⟩

1√∑n
i=0 ∥xi∥

2

n∑
i=0

∥xi∥ |i⟩ |xi⟩

• Execution time: O(log nd)
• Preparation time: O(nd log nd)
• Size: O(nd log nd)





QRAM [[2,3,4],[5,6,7],[8,9,10]]



QRAM + swaps... better

Thanks Alex Singh for the circuit



2 - Q-BLAS
- M ∈ Rd×d, s.t. ∥M∥2 = 1, in QRAM
- x ∈ Rd in QRAM.
There is a quantum algorithm that w.h.p. returns :

(i) |z⟩ such that
∥∥|z⟩ − |M−1x⟩

∥∥ ≤ ϵ

in time Õ(κ(M)µ(M) log(1/ϵ))

(ii) |z⟩ such that ∥|z⟩ − |Mx⟩∥ ≤ ϵ

in time Õ(κ(M)µ(M) log(1/ϵ))

(iii) a state |M+
≤θM≤θx⟩

in time Õ( µ(M)∥x∥
δθ∥M+

≤θM≤θx∥)

Get estimates of ∥z∥ = f(M)x (with mult. error ϵ2, time
O() · ϵ−1

2 )

Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018).
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2.5 - Q-BLAS
- A, B ∈ Rd×d in QRAM
∥A∥2 = ∥B∥2 = 1, in QRAM
- x ∈ Rd in QRAM.
There is a quantum algorithm that w.h.p. returns :

(i) |z⟩ such that
∥∥|z⟩ − |(AB)−1x⟩

∥∥ ≤ ϵ

(ii) |z⟩ such that ∥|z⟩ − |(AB)x⟩∥ ≤ ϵ

(iii) a state |(AB)+≤θ,δ(AB)≤θ,δx⟩

Get estimates of ∥z∥ = f(AB)x (with mult. error ϵ2, time
O() · ϵ−1

2 )

Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018).



• Before: Quantum Singular Value Estimation∑
i

αi |vi⟩ 7→
∑
i

αi |vi⟩ |σi⟩

• Now: Qubitization:

W = eiϕ0σzeiθσxeiϕ1σzeiθσx · · · eiϕkσzeiθσx

Family of possible W is large enough...



3 - Compute distances

V ∈ Rn×d, C ∈ Rk×d in the QRAM, and ϵ > 0
There is a quantum algorithm that w.h.p. and in time Õ

(
η
ϵ

)
|i⟩ |j⟩ |0⟩ 7→ |i⟩ |j⟩ |d(vi, cj)⟩

where |d(vi, cj)− d(vi, cj)| ⩽ ϵ , where η = max∥vi∥
min∥vi∥

.

Based on: Wiebe, N., Kapoor, A., & Svore, K. (2014). Quantum algorithms
for nearest-neighbor methods for supervised and unsupervised learning.
arXiv preprint arXiv:1401.2142.



3 - sketch proof
• Use Quantum Frobenius Dinstance to build:

∥vi∥√
Zij

|i⟩ |j⟩ |0⟩ |vi⟩+
∥∥cj∥∥√
Zij

|i⟩ |j⟩ |1⟩ |cj⟩

• Hadamard on 3rd qubit.

p(1)ij =
1

2Zij
(∥vi∥2+

∥∥cj∥∥2−2 ∥vi∥
∥∥cj∥∥ ⟨vi, cj⟩) = d(vi, cj)2

2Zij

• Perform amplitude estimation on L copies.

• Use Median Lemma (Wiebe et. al.)

• Invert circuit (garbage collection), multiply by 2Zij.



4 - Tomography

For a pure quantum state |x⟩, there is a
tomography algorithm with sample and time
complexity O(d log d/ϵ2) that produces an estimate
x̃ ∈ Rd with ∥x̃∥2 = 1 such that ∥x̃− x∥2 ≤ ϵ with
probability at least (1 − 1/d0.83).

Kerenidis, Iordanis, and Anupam Prakash. ”A quantum
interior point method for LPs and SDPs.” arXiv preprint
arXiv:1808.09266 (2018).





PCA



SFA || FLD



Slow Feature Analysis (Supervised)

Input signal: x(i) ∈ Rd. Task: Learn K functions:

y(i) = [g1(x(i)), · · · , gK(x(i))]

Such that ∀j ∈ [K]. Minimize:

∆(yj) =
1
a

K∑
k=1

∑
s,t∈Tk
s<t

(
gj(x(s))− gj(x(t))

)2

Constraints on output signal: average of components is 0,
variance of components is 1, signals are decorrelated.

Def Cov. matrix B := XTX, Derivative cov. matrix A := ẊTẊ

AW = BWΛ
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Step 1: Whitening

Data is whitened (sphered) if B = XTX = I.

Whitening its just matrix (Moore-Penrose) inversion
Z := X+X .. now ZTZ = I
Freebie Theorem!
There exists an efficient quantum algorithm for
whitening that builds |Z⟩



Step 2: Projection

• Whiten data |X⟩ 7→ |Z⟩
• Project data in slow feature space |Z⟩ 7→ |Y⟩



New algo! QSFA

- Let X =
∑

i σiuiv
T
i ∈ Rn×d, Ẋ ∈ Rn log n×d QRAM.

- Let ϵ, θ, δ, η > 0.
There exists a quantum algorithm that produces:

• |Y⟩ with | |Y⟩ − |A+≤θ,δA≤θ,δZ⟩ | ≤ ϵ in time

Õ
((

κ(X)µ(X) log(1/ε) +
(µ(X) + µ(Ẋ))

δθ

)
× ||Z||

||A+≤θ,δA≤θ,δZ||

)

• ∥Y∥ s.t. |∥Y∥ − ∥Y∥ | ≤ η ∥Y∥ with an
additional 1/η factor.



New algo! QFDC (Supervised)

Xk ∈ R|Tk|×d matrix of elements labeled k
X0 ∈ R|Tk|×d repeats the row x0 for |Tk| times.

Fk(x0) =
∥Xk − X0∥2

F

2(∥Xk∥2
F + ∥X0∥2

F)
,

1√
Nk

(
|0⟩

∑
i∈Tk

∥x(0)∥ |i⟩ |x(0)⟩+|1⟩
∑
i∈Tk

∥x(i)∥ |i⟩ |x(i)⟩
)

h(x0) = mink{Fk(y0) = p(|1⟩)}



Accuracy QSFA+QFDC
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k-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters

∀i ∈ [n], c ∈ [k] d(vi, ci)

• Assign points to closer cluster

l(vi) = arg min
c∈[k]

d(vi, ci)

• Calculate new centroids

cj =
1
|Cj|

∑
i∈Cj

vi

... is O(tndk) :(
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δ-k-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters

∀i ∈ [n], c ∈ [k] d(vi, ci)

• Assign points to closer cluster

Lδ(vi) = {cp |d2(c∗i , vi)− d2(cp, vi)| ≤ δ }

l(vi) = rand(Lδ(vi))

• Calculate new centroids

cj =
1
|Cj|

∑
i∈Cj

vi



q-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters
K⊗
j=0

n∑
i=0

|i⟩ |j⟩ |d(vi, ci)⟩

• Assign points to closer cluster
n∑
i=0

|i⟩ |l(i)⟩

• Calculate centroids again
k∑
j=1

√
|Cj|
N

|ct+1
j ⟩ |j⟩



Well-clusterable data

The data is (ξ, β, λ, η)-well clustered if there are
ξ > 0, β > 0, 0 ≪ λ < 1, η > 1 :

1 clusters’ separation: d(ci, cj) ≥ ξ ∀i, j ∈ [k]
2 proximity to centroid: A fraction λn of points
vi in the dataset verify: d(vi, cl(vi)) ≤ β.

3 dataset’s width: All the norms are between 1
and η = maxi (∥vi∥)





New algo! q-means

For a (ξ, β, λ, η)-well clusterable dataset V ∈ Rn×d

in QRAM, there is a quantum algorithm that returns
in t steps the k centroids that cluster the dataset
consistently with the classical δ-k-means algorithm
in time Õ

(
t · k

3dη3

δ3

)
.



Accuracy q-means



λmax/λmin: more data

Condition number by increasing the number of elements in
training set



λmax/λmin: more features

Condition number by increasing the features (pixels)



µ(X): more data

µ(X) and µ(Ẋ) by increasing the number of elements in
training set.



µ(X): more features

µ(X) and µ(Ẋ) by increasing the number of features.



Conclusions

Quantum Slow Feature Analysis and Quantum Frobenius
Distance Classifier on MNIST

• ∝ 150 || 200 (Logical) qubits

• Classifying the test set (104 vectors) with quantum algos
is ≃ 100 times faster

• Possibility to extract the model classically!
|i⟩ |i⟩ 7→ |i⟩ |gi⟩.

• Not only fast but might be more accurate!



Conclusions

q-means
• Exponentially faster in the number of data

points: O(n) → O(log n).
• Finding new datasets to apply q-means.
• We recover the centroids classically



... Yet an uneven comparison?

From: https://hdbscan.readthedocs.io/en/latest/performance_
and_scalability.html

https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html


#TODOs

• Generalizations...
• Experiments...
• Code...
• New algos...
• Compositions...
• Adversarial QML...
• Privacy preserving QML...



Thanks for your time
there is never enough.

(cit. Dan Geer)

@scinawa

• Quantum Machine Learning ⇒ https://luongo.pro/qml

• QSFA + QFDC ⇒ https://arxiv.org/abs/1805.08837

• q-means ⇒ stay tuned...



• Projective Simulation

• Quantum Recommendation Systems

• Quantum SVM

• Quantum Anomaly detection

• Quantum Gradient Descent

•

• Quantum PCA

• ...



1 Ewin Tang. A quantum-inspired classical
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arXiv:1807.04271, 2018. (undergraduate thesis,
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2 Ewin Tang. Quantum-inspired classical
algorithms for principal component
analysis and supervised clustering.
arXiv:1811.00414, 2018.

3 Ewin Tang et al. Quantum-inspired low-rank
stochastic regression with logarithmic
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1811.04909, 2018
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