
Finding a marked node on any graph by

continuous-time quantum walk

Shantanav Chakraborty, Leonardo Novo, Jérémie Roland

arXiv:1807.05957

QuIC, Université libre de Bruxelles

ICoQC Paris

November 26, 2018

Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is
pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic

I Eigenvalues of P lie between −1 and 1.

I π is unique.

Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is
pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic

I Eigenvalues of P lie between −1 and 1.

I π is unique.

Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is
pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic

I Eigenvalues of P lie between −1 and 1.

I π is unique.

Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is
pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic

I Eigenvalues of P lie between −1 and 1.

I π is unique.

Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is
pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic

I Eigenvalues of P lie between −1 and 1.

I π is unique.

Classical Hitting time

Set of marked nodes:
M ⊆ X .

Hitting time: Starting from some random node x ∼ π, the expected number of
steps to reach some node ∈ M.

Spatial search (classical)

1. Sample x ∈ X from π.

2. Check if x ∈ M.

3. If x ∈ M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.

Classical Hitting time

Set of marked nodes:
M ⊆ X .

Hitting time: Starting from some random node x ∼ π, the expected number of
steps to reach some node ∈ M.

Spatial search (classical)

1. Sample x ∈ X from π.

2. Check if x ∈ M.

3. If x ∈ M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.

Classical Hitting time

Set of marked nodes:
M ⊆ X .

Hitting time: Starting from some random node x ∼ π, the expected number of
steps to reach some node ∈ M.

Spatial search (classical)

1. Sample x ∈ X from π.

2. Check if x ∈ M.

3. If x ∈ M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.

Classical Hitting time

Set of marked nodes:
M ⊆ X .

Hitting time: Starting from some random node x ∼ π, the expected number of
steps to reach some node ∈ M.

Spatial search (classical)

1. Sample x ∈ X from π.

2. Check if x ∈ M.

3. If x ∈ M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.

Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing

Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some

x ∈ M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing

Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some

x ∈ M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing

Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some

x ∈ M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing

Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some

x ∈ M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing

Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some

x ∈ M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

Framework

Let U = X\M.

π = (πU πM) π′ ∝ (0 πM) (P ′ is not ergodic)

Additional assumption: P is reversible =⇒ πxpxy = πypyx , ∀(x , y) ∈ X .

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

Framework

Let U = X\M.

π = (πU πM) π′ ∝ (0 πM) (P ′ is not ergodic)

Additional assumption: P is reversible =⇒ πxpxy = πypyx , ∀(x , y) ∈ X .

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

Framework

Let U = X\M.

π = (πU πM) π′ ∝ (0 πM) (P ′ is not ergodic)

Additional assumption: P is reversible =⇒ πxpxy = πypyx , ∀(x , y) ∈ X .

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

Framework

Let U = X\M.

π = (πU πM) π′ ∝ (0 πM) (P ′ is not ergodic)

Additional assumption: P is reversible =⇒ πxpxy = πypyx , ∀(x , y) ∈ X .

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state: π(s) ∝ ((1− s)πU πM).

If P is reversible =⇒ P(s) is reversible for 0 ≤ s < 1.

We will work with

I Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) = 1.

I Discriminant matrix of P(s): D(P(s)) =
√

P(s) ◦ P(s)T .

- Dxy (s) =
√

pxy (s)pyx(s).

- Spectral decomposition: D(P(s)) =
∑n

i=1
λi (s) |vi (s)〉 〈vi (s)|.

- Same eigenvalues as P(s).

- |vn(s)〉 =
√
π(s)T .

- Spectral gap: ∆(s) = 1− λn−1(s).

The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O
(√

HT+(P,M)
)
.

[Krovi, Magniez, Ozols, and Roland 2014]

HT+(P,M): Extended hitting time

- For |M| = 1, HT+(P,M) = HT (P,M) =⇒ Quadratic speedup for
unique marked node.

- For |M| > 1, HT+(P,M) ≥ HT (P,M).

Complexity of spatial search by CTQW

No such general result known.

The algorithm by Childs and Goldstone has been applied to certain speci�c
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].

The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O
(√

HT+(P,M)
)
.

[Krovi, Magniez, Ozols, and Roland 2014]

HT+(P,M): Extended hitting time

- For |M| = 1, HT+(P,M) = HT (P,M) =⇒ Quadratic speedup for
unique marked node.

- For |M| > 1, HT+(P,M) ≥ HT (P,M).

Complexity of spatial search by CTQW

No such general result known.

The algorithm by Childs and Goldstone has been applied to certain speci�c
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].

The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O
(√

HT+(P,M)
)
.

[Krovi, Magniez, Ozols, and Roland 2014]

HT+(P,M): Extended hitting time

- For |M| = 1, HT+(P,M) = HT (P,M) =⇒ Quadratic speedup for
unique marked node.

- For |M| > 1, HT+(P,M) ≥ HT (P,M).

Complexity of spatial search by CTQW

No such general result known.

The algorithm by Childs and Goldstone has been applied to certain speci�c
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].

The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O
(√

HT+(P,M)
)
.

[Krovi, Magniez, Ozols, and Roland 2014]

HT+(P,M): Extended hitting time

- For |M| = 1, HT+(P,M) = HT (P,M) =⇒ Quadratic speedup for
unique marked node.

- For |M| > 1, HT+(P,M) ≥ HT (P,M).

Complexity of spatial search by CTQW

No such general result known.

The algorithm by Childs and Goldstone has been applied to certain speci�c
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].

Main results

I For any ergodic, reversible Markov chain provide a spatial

search algorithm by CTQW that has a running time of

Θ(
√

HT+(P,M)).

I State general conditions for the optimality of the Childs and

Goldstone algorithm on any ergodic, reversible Markov chain.

I Compare the running time of our algorithm with the Childs

and Goldstone algorithm.

Main results

I For any ergodic, reversible Markov chain provide a spatial

search algorithm by CTQW that has a running time of

Θ(
√

HT+(P,M)).

I State general conditions for the optimality of the Childs and

Goldstone algorithm on any ergodic, reversible Markov chain.

I Compare the running time of our algorithm with the Childs

and Goldstone algorithm.

Main results

I For any ergodic, reversible Markov chain provide a spatial

search algorithm by CTQW that has a running time of

Θ(
√

HT+(P,M)).

I State general conditions for the optimality of the Childs and

Goldstone algorithm on any ergodic, reversible Markov chain.

I Compare the running time of our algorithm with the Childs

and Goldstone algorithm.

Continuous-time quantum walk on a graph

I Evolve a time-independent Hamiltonian, HG , encoding the

connectivity of the underlying graph according to the

Schrödinger equation.

I Initial state: |ψ0〉

I Probability of the walker being in state |ψf 〉, after time t

p(t) = | 〈ψf | e−iHG t |ψ0〉 |2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.
We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].

Continuous-time quantum walk on a graph

I Evolve a time-independent Hamiltonian, HG , encoding the

connectivity of the underlying graph according to the

Schrödinger equation.

I Initial state: |ψ0〉

I Probability of the walker being in state |ψf 〉, after time t

p(t) = | 〈ψf | e−iHG t |ψ0〉 |2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.
We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].

Continuous-time quantum walk on a graph

I Evolve a time-independent Hamiltonian, HG , encoding the

connectivity of the underlying graph according to the

Schrödinger equation.

I Initial state: |ψ0〉

I Probability of the walker being in state |ψf 〉, after time t

p(t) = | 〈ψf | e−iHG t |ψ0〉 |2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.
We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].

Continuous-time quantum walk on a graph

I Evolve a time-independent Hamiltonian, HG , encoding the

connectivity of the underlying graph according to the

Schrödinger equation.

I Initial state: |ψ0〉

I Probability of the walker being in state |ψf 〉, after time t

p(t) = | 〈ψf | e−iHG t |ψ0〉 |2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.
We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].

Search Hamiltonian

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1)

Discriminant matrix: Dxy (s) =
√

pxy (s)pyx(s).

Same eigenvalues as P(s). Spectral gap: ∆(s) = 1− λn−1(s).

|vn(s)〉 =
√
π(s)T .

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V (s) ∈ H×H :

V (s) |x , 0〉 =
∑
y∈X

√
pxy (s) |x , y〉 .

If S |x , y〉 = |y , x〉, then observe that

〈x , 0|V †(s)SV (s)|y , 0〉 =
√

pxy (s)pyx(s) = Dxy (s).

If Π0 = I ⊗ |0〉 〈0| ,

H(s) = i [V †(s)SV (s),Π0].

Search Hamiltonian

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1)

Discriminant matrix: Dxy (s) =
√

pxy (s)pyx(s).

Same eigenvalues as P(s). Spectral gap: ∆(s) = 1− λn−1(s).

|vn(s)〉 =
√
π(s)T .

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V (s) ∈ H×H :

V (s) |x , 0〉 =
∑
y∈X

√
pxy (s) |x , y〉 .

If S |x , y〉 = |y , x〉, then observe that

〈x , 0|V †(s)SV (s)|y , 0〉 =
√

pxy (s)pyx(s) = Dxy (s).

If Π0 = I ⊗ |0〉 〈0| ,

H(s) = i [V †(s)SV (s),Π0].

Search Hamiltonian

Interpolating Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0, 1)

Discriminant matrix: Dxy (s) =
√

pxy (s)pyx(s).

Same eigenvalues as P(s). Spectral gap: ∆(s) = 1− λn−1(s).

|vn(s)〉 =
√
π(s)T .

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V (s) ∈ H×H :

V (s) |x , 0〉 =
∑
y∈X

√
pxy (s) |x , y〉 .

If S |x , y〉 = |y , x〉, then observe that

〈x , 0|V †(s)SV (s)|y , 0〉 =
√

pxy (s)pyx(s) = Dxy (s).

If Π0 = I ⊗ |0〉 〈0| ,

H(s) = i [V †(s)SV (s),Π0].

Spectrum of H(s)

- |vn(s), 0〉 is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of H(s):
√
1− λ2n−1(s) = Θ(

√
∆(s)).

For s = s∗ = 1− pM/(1− pM), |vn(s∗)〉 = |U〉+|M〉√
2

.

pM =
∑
x∈M

πx

|U〉 =
1√

1− pM

∑
x /∈M

√
πx |x〉

|M〉 =
1
√
pM

∑
x∈M

√
πx |x〉

Spectrum of H(s)

- |vn(s), 0〉 is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of H(s):
√
1− λ2n−1(s) = Θ(

√
∆(s)).

For s = s∗ = 1− pM/(1− pM), |vn(s∗)〉 = |U〉+|M〉√
2

.

pM =
∑
x∈M

πx

|U〉 =
1√

1− pM

∑
x /∈M

√
πx |x〉

|M〉 =
1
√
pM

∑
x∈M

√
πx |x〉

Algorithm

1. Prepare the state |vn(0)〉 |0〉.

2. For s∗ = 1− pM/(1− pM) and T = Θ(
√

HT+(P,M)), evolve
according to H(s∗) for a time chosen uniformly at random between
[0,T].

3. Measure in the basis spanned by the state space, in the �rst register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s∗) kills coherence terms between
|vn(s∗)〉 and its orthogonal eigenstates.

- We obtain a mixed state between |vn(s∗)〉 and the rest.

- Expected running time: T

Algorithm

1. Prepare the state |vn(0)〉 |0〉.

2. For s∗ = 1− pM/(1− pM) and T = Θ(
√

HT+(P,M)), evolve
according to H(s∗) for a time chosen uniformly at random between
[0,T].

3. Measure in the basis spanned by the state space, in the �rst register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s∗) kills coherence terms between
|vn(s∗)〉 and its orthogonal eigenstates.

- We obtain a mixed state between |vn(s∗)〉 and the rest.

- Expected running time: T

Algorithm

1. Prepare the state |vn(0)〉 |0〉.

2. For s∗ = 1− pM/(1− pM) and T = Θ(
√

HT+(P,M)), evolve
according to H(s∗) for a time chosen uniformly at random between
[0,T].

3. Measure in the basis spanned by the state space, in the �rst register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s∗) kills coherence terms between
|vn(s∗)〉 and its orthogonal eigenstates.

- We obtain a mixed state between |vn(s∗)〉 and the rest.

- Expected running time: T

Algorithm

1. Prepare the state |vn(0)〉 |0〉.

2. For s∗ = 1− pM/(1− pM) and T = Θ(
√

HT+(P,M)), evolve
according to H(s∗) for a time chosen uniformly at random between
[0,T].

3. Measure in the basis spanned by the state space, in the �rst register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s∗) kills coherence terms between
|vn(s∗)〉 and its orthogonal eigenstates.

- We obtain a mixed state between |vn(s∗)〉 and the rest.

- Expected running time: T

Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1〉 , . . . , |n〉}
Oracle Hamiltonian: Horacle = |w〉 〈w |.

Dynamics is driven by the Hamiltonian H1 = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Horacle + rH1 [r is a real number which we are free
to choose.]

Task: Find |w〉.

Given a graph G , algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G .
Thus |s〉 = 1/

√
n
∑

i |i〉.

2. Measure after T = O(
√
n) in the basis of the nodes. If

Pw (T) = | 〈w | e−iAT |s〉 |2 = Θ(1) =⇒ Optimal for G!

Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1〉 , . . . , |n〉}
Oracle Hamiltonian: Horacle = |w〉 〈w |.

Dynamics is driven by the Hamiltonian H1 = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Horacle + rH1 [r is a real number which we are free
to choose.]

Task: Find |w〉.

Given a graph G , algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G .
Thus |s〉 = 1/

√
n
∑

i |i〉.

2. Measure after T = O(
√
n) in the basis of the nodes. If

Pw (T) = | 〈w | e−iAT |s〉 |2 = Θ(1) =⇒ Optimal for G!

Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1〉 , . . . , |n〉}
Oracle Hamiltonian: Horacle = |w〉 〈w |.

Dynamics is driven by the Hamiltonian H1 = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Horacle + rH1 [r is a real number which we are free
to choose.]

Task: Find |w〉.

Given a graph G , algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G .
Thus |s〉 = 1/

√
n
∑

i |i〉.

2. Measure after T = O(
√
n) in the basis of the nodes. If

Pw (T) = | 〈w | e−iAT |s〉 |2 = Θ(1) =⇒ Optimal for G!

Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1〉 , . . . , |n〉}
Oracle Hamiltonian: Horacle = |w〉 〈w |.

Dynamics is driven by the Hamiltonian H1 = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Horacle + rH1 [r is a real number which we are free
to choose.]

Task: Find |w〉.

Given a graph G , algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G .
Thus |s〉 = 1/

√
n
∑

i |i〉.

2. Measure after T = O(
√
n) in the basis of the nodes.

If
Pw (T) = | 〈w | e−iAT |s〉 |2 = Θ(1) =⇒ Optimal for G!

Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1〉 , . . . , |n〉}
Oracle Hamiltonian: Horacle = |w〉 〈w |.

Dynamics is driven by the Hamiltonian H1 = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Horacle + rH1 [r is a real number which we are free
to choose.]

Task: Find |w〉.

Given a graph G , algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G .
Thus |s〉 = 1/

√
n
∑

i |i〉.

2. Measure after T = O(
√
n) in the basis of the nodes. If

Pw (T) = | 〈w | e−iAT |s〉 |2 = Θ(1) =⇒ Optimal for G!

Complete graph:

Aij = 1, i 6= j

Same as analog Grover

H = − |w〉 〈w | − |s〉 〈s|

= − |w〉 〈w | − 1

n
A

Optimal! T = O(
√
n)

Hypercube:

Optimal! T = O(
√
n)

Square Lattices:

d ≤ 3
No signi�cant speed-up

d = 4

T = O(
√
n log n)

d > 4

Optimal!T = O(
√
n)

Complete graph:

Aij = 1, i 6= j

Same as analog Grover

H = − |w〉 〈w | − |s〉 〈s|

= − |w〉 〈w | − 1

n
A

Optimal! T = O(
√
n)

Hypercube:

Optimal! T = O(
√
n)

Square Lattices:

d ≤ 3
No signi�cant speed-up

d = 4

T = O(
√
n log n)

d > 4

Optimal!T = O(
√
n)

Complete graph:

Aij = 1, i 6= j

Same as analog Grover

H = − |w〉 〈w | − |s〉 〈s|

= − |w〉 〈w | − 1

n
A

Optimal! T = O(
√
n)

Hypercube:

Optimal! T = O(
√
n)

Square Lattices:

d ≤ 3
No signi�cant speed-up

d = 4

T = O(
√
n log n)

d > 4

Optimal!T = O(
√
n)

Su�cient condition for the optimality of CG algorithm

Let HG be a Hamiltonian with eigenvalues

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

(∆ > 0) such that HG |vi 〉 = λi |vi 〉.

Search Hamiltonian: Hsearch = |w〉 〈w |+ rHG .

Let |w〉 =
∑

i ai |vi 〉 and | 〈w |vn〉 | = |an| =
√
ε.

Optimal r =
∑
i 6=n

|ai |2

1− λi
and Max. amplitude ν =

∑
i 6=n

|ai |2
1−λi√∑

i 6=n
|ai |2

(1−λi)
2

.

Restriction:
√
ε� r∆/ν, Initial state: |vn〉, Running time: T = Θ

(
1√
εν

)
.

Final state: |f 〉 such that | 〈w |f 〉 | ≈ ν.

Apply O(1/ν) rounds of amplitude ampli�cation: Tsearch = O
(

1

ν2
√
ε

)
.

Su�cient condition for the optimality of CG algorithm

Let HG be a Hamiltonian with eigenvalues

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

(∆ > 0) such that HG |vi 〉 = λi |vi 〉.

Search Hamiltonian: Hsearch = |w〉 〈w |+ rHG .

Let |w〉 =
∑

i ai |vi 〉 and | 〈w |vn〉 | = |an| =
√
ε.

Optimal r =
∑
i 6=n

|ai |2

1− λi
and Max. amplitude ν =

∑
i 6=n

|ai |2
1−λi√∑

i 6=n
|ai |2

(1−λi)
2

.

Restriction:
√
ε� r∆/ν, Initial state: |vn〉, Running time: T = Θ

(
1√
εν

)
.

Final state: |f 〉 such that | 〈w |f 〉 | ≈ ν.

Apply O(1/ν) rounds of amplitude ampli�cation: Tsearch = O
(

1

ν2
√
ε

)
.

Su�cient condition for the optimality of CG algorithm

Let HG be a Hamiltonian with eigenvalues

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

(∆ > 0) such that HG |vi 〉 = λi |vi 〉.

Search Hamiltonian: Hsearch = |w〉 〈w |+ rHG .

Let |w〉 =
∑

i ai |vi 〉 and | 〈w |vn〉 | = |an| =
√
ε.

Optimal r =
∑
i 6=n

|ai |2

1− λi
and Max. amplitude ν =

∑
i 6=n

|ai |2
1−λi√∑

i 6=n
|ai |2

(1−λi)
2

.

Restriction:
√
ε� r∆/ν, Initial state: |vn〉, Running time: T = Θ

(
1√
εν

)
.

Final state: |f 〉 such that | 〈w |f 〉 | ≈ ν.

Apply O(1/ν) rounds of amplitude ampli�cation: Tsearch = O
(

1

ν2
√
ε

)
.

Su�cient condition for the optimality of CG algorithm

Let HG be a Hamiltonian with eigenvalues

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

(∆ > 0) such that HG |vi 〉 = λi |vi 〉.

Search Hamiltonian: Hsearch = |w〉 〈w |+ rHG .

Let |w〉 =
∑

i ai |vi 〉 and | 〈w |vn〉 | = |an| =
√
ε.

Optimal r =
∑
i 6=n

|ai |2

1− λi
and Max. amplitude ν =

∑
i 6=n

|ai |2
1−λi√∑

i 6=n
|ai |2

(1−λi)
2

.

Restriction:
√
ε� r∆/ν, Initial state: |vn〉, Running time: T = Θ

(
1√
εν

)
.

Final state: |f 〉 such that | 〈w |f 〉 | ≈ ν.

Apply O(1/ν) rounds of amplitude ampli�cation: Tsearch = O
(

1

ν2
√
ε

)
.

Su�cient condition for the optimality of CG algorithm

Let HG be a Hamiltonian with eigenvalues

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

(∆ > 0) such that HG |vi 〉 = λi |vi 〉.

Search Hamiltonian: Hsearch = |w〉 〈w |+ rHG .

Let |w〉 =
∑

i ai |vi 〉 and | 〈w |vn〉 | = |an| =
√
ε.

Optimal r =
∑
i 6=n

|ai |2

1− λi
and Max. amplitude ν =

∑
i 6=n

|ai |2
1−λi√∑

i 6=n
|ai |2

(1−λi)
2

.

Restriction:
√
ε� r∆/ν, Initial state: |vn〉, Running time: T = Θ

(
1√
εν

)
.

Final state: |f 〉 such that | 〈w |f 〉 | ≈ ν.

Apply O(1/ν) rounds of amplitude ampli�cation: Tsearch = O
(

1

ν2
√
ε

)
.

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016].

Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1).

Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

| 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

Whenever ν = Θ(1), Tsearch = O(1/
√
ε).

I When ∆ = Θ(1), ν = Θ(1)

- HG is the adjacency matrix of a regular graph (ε = 1/n) with
∆ = Θ(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

I ν can be Θ(1) even when ∆ 6= Θ(1)

- For d-dimensional lattices with d > 4, ∆ ∼ n−2/d but
ν = Θ(1). Optimal!

- At d = 4, ν = Θ(1/
√

log n) =⇒ Tsearch = O(
√
n log n).

I Algorithm is optimal for any symmetric P having ν = Θ(1).

Drawbacks of the CG algorithm

r =
∑

i 6=n
|〈w|vi 〉|2
1−λi

, | 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

I Predicting r requires knowledge of solution unless P is also
state-transitive.

I The condition
√
ε� r∆/ν needs to be satis�ed.

- Does not hold for lattices of dimension less than four.

I We show that Ω(
√

∆) < ν < 1.

- HT (P,w) ≤ 1

∆ε
. So when ν =

√
∆ =⇒ Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

Drawbacks of the CG algorithm

r =
∑

i 6=n
|〈w|vi 〉|2
1−λi

, | 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

I Predicting r requires knowledge of solution unless P is also
state-transitive.

I The condition
√
ε� r∆/ν needs to be satis�ed.

- Does not hold for lattices of dimension less than four.

I We show that Ω(
√

∆) < ν < 1.

- HT (P,w) ≤ 1

∆ε
. So when ν =

√
∆ =⇒ Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

Drawbacks of the CG algorithm

r =
∑

i 6=n
|〈w|vi 〉|2
1−λi

, | 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

I Predicting r requires knowledge of solution unless P is also
state-transitive.

I The condition
√
ε� r∆/ν needs to be satis�ed.

- Does not hold for lattices of dimension less than four.

I We show that Ω(
√

∆) < ν < 1.

- HT (P,w) ≤ 1

∆ε
. So when ν =

√
∆ =⇒ Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

Drawbacks of the CG algorithm

r =
∑

i 6=n
|〈w|vi 〉|2
1−λi

, | 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

I Predicting r requires knowledge of solution unless P is also
state-transitive.

I The condition
√
ε� r∆/ν needs to be satis�ed.

- Does not hold for lattices of dimension less than four.

I We show that Ω(
√

∆) < ν < 1.

- HT (P,w) ≤ 1

∆ε
.

So when ν =
√

∆ =⇒ Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

Drawbacks of the CG algorithm

r =
∑

i 6=n
|〈w|vi 〉|2
1−λi

, | 〈w |f 〉 | ≈ ν, | 〈w |vn〉 | = |an| =
√
ε

Tsearch = O
(

1

ν2
√
ε

)
.

I Predicting r requires knowledge of solution unless P is also
state-transitive.

I The condition
√
ε� r∆/ν needs to be satis�ed.

- Does not hold for lattices of dimension less than four.

I We show that Ω(
√

∆) < ν < 1.

- HT (P,w) ≤ 1

∆ε
. So when ν =

√
∆ =⇒ Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1. Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .
Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1.

Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .
Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1. Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .
Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1. Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .

Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1. Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .
Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P , use the Somma-Ortiz Hamilto-

nian, i.e. H1 = i [V †SV ,Π0].

One possibility: |w , 0〉 〈w , 0|+ rH1. Does not work as critical value of r = 0.

Alternatively: Use a di�erent oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0| .
Example: If H1 is the adjacency matrix of the graph, Horacle removes the edges

connected to the marked node.

Use the search Hamiltonian

Hsearch = − |w , 0〉 〈w , 0|H1 − H1 |w , 0〉 〈w , 0|+ H1

to rotate from |vn, 0〉 to the state

|w̃〉 =
H1 |w〉
||H1 |w〉 ||

.

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′H2 |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′H2 |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′Horacle |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

Improvement over the CG algorithm

I Whenever CG algorithm is optimal, so is CG′.

I For 2d-lattices, CG′ algorithm has a running time of
Tsearch = O(

√
n log n). Our algorithm: O(

√
n log n).

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′Horacle |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

Improvement over the CG algorithm

I Whenever CG algorithm is optimal, so is CG′.

I For 2d-lattices, CG′ algorithm has a running time of
Tsearch = O(

√
n log n). Our algorithm: O(

√
n log n).

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′Horacle |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

Improvement over the CG algorithm

I Whenever CG algorithm is optimal, so is CG′.

I For 2d-lattices, CG′ algorithm has a running time of
Tsearch = O(

√
n log n).

Our algorithm: O(
√
n log n).

I Amplitude ampli�cation results in the state |w̃〉 and so

Tsearch = O
(
µ2/
√
ε
)
.

I Also e−it′Horacle |w̃〉 = |w , 0〉, where t′ = O(µ). So O(µ) additional
queries to the oracle are needed to obtain |w〉.

Improvement over the CG algorithm

I Whenever CG algorithm is optimal, so is CG′.

I For 2d-lattices, CG′ algorithm has a running time of
Tsearch = O(

√
n log n). Our algorithm: O(

√
n log n).

Conclusions

I Spatial search algorithm by CTQW that runs in

Θ(
√

HT+(P,M)) time on any ergodic, reversible Markov

chain.

I Provided general conditions for the optimality of the spatial
search algorithm by Childs and Goldstone
I Applicable to only state-transitive Markov chains.

I Sub-optimal.

I Improved the Childs and Goldstone algorithm to be applicable

to any ergodic, reversible Markov chain.

Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an

ergodic, reversible Markov chain.

Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an

ergodic, reversible Markov chain.

Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an

ergodic, reversible Markov chain.

Thank you for your attention!

For more details see:

S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph
by continuous time quantum walk, arXiv:1807.05957 (2018).

