Finding a marked node on any graph by
continuous-time quantum walk

Shantanav Chakraborty, Leonardo Novo, Jérémie Roland
arXiv:1807.05957

QulC, Université libre de Bruxelles

1CoQC Paris

November 26, 2018

|A:] LIBRE
DE BRUXELLES Quantum Information & Communication

. UNIVERSITE QuIC
U



Classical random walk on a graph

Y

Pxy




Classical random walk on a graph

Pxy X

- Classical random walk on a discrete state space X, such that |X| = n.

- Described by a n x n stochastic matrix P such that its (x, y)"™ entry is
Pxy -

- If the row-vector v is the initial state of the walker, after t-steps:
ve = v PL.




Classical random walk on a graph

Pxy X

- Classical random walk on a discrete state space X, such that |X| = n.

- Described by a n x n stochastic matrix P such that its (x, y)"™ entry is
Pxy -

- If the row-vector v is the initial state of the walker, after t-steps:
ve = v PL.

- Stationary state: row vector m such that 7 = 7P.




Classical random walk on a graph

Pxy

- Classical random walk on a discrete state space X, such that |X| = n.

- Described by a n x n stochastic matrix P such that its (x, y)"™ entry is
Pxy -

- If the row-vector v is the initial state of the walker, after t-steps:
ve = v PL.

- Stationary state: row vector m such that 7 = 7P.

- Assumptions: P is ergodic




Classical random walk on a graph

Pxy

- Classical random walk on a discrete state space X, such that |X| = n.

- Described by a n x n stochastic matrix P such that its (x, y)"™ entry is
Pxy -

- If the row-vector v is the initial state of the walker, after t-steps:
ve = v PL.

- Stationary state: row vector m such that 7 = 7P.
- Assumptions: P is ergodic

> Eigenvalues of P lie between —1 and 1.

> 7 is unique.




Classical Hitting time

Set of marked nodes:
P M C X.




Classical Hitting time

Pxy X

Set of marked nodes:
P M C X.

Hitting time: Starting from some random node x ~ m, the expected number of
steps to reach some node € M.




Classical Hitting time

Pxy X

Set of marked nodes:
P M C X.

Hitting time: Starting from some random node x ~ m, the expected number of
steps to reach some node € M.

Spatial search (classical)

1. Sample x € X from 7.
2. Check if x € M.

3.
4

If x € M, output x

. Otherwise update x according to P and go to step 2.




Classical Hitting time

Pxy X

Set of marked nodes:
P M C X.

Hitting time: Starting from some random node x ~ m, the expected number of
steps to reach some node € M.

Spatial search (classical)

1. Sample x € X from 7.

2. Check if x € M.

3. If x € M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.




Classical Hitting time

Spatial search stops when x € M — Walk on an absorbing
Markov chain P’

y y

o< Pxy




Classical Hitting time

Spatial search stops when x € M — Walk on an absorbing
Markov chain P’

Y

o< Pxy X

y
Coc o P :
Pre Pr
€ z z

HT(P, M) = Expected number of steps of P’ to reach some
x e M.




Classical Hitting time

Spatial search stops when x € M — Walk on an absorbing
Markov chain P’

Y

o Pxy X

y
Ghe @< Pxy x
Pz P
€ z z

HT(P, M) = Expected number of steps of P’ to reach some
x e M.

Complexity of spatial search by quantum walk?



Classical Hitting time

Spatial search stops when x € M — Walk on an absorbing
Markov chain P’

Y

e Pxy X

y
e @< Pxy x
Pz P
€ z z

HT(P, M) = Expected number of steps of P’ to reach some
x e M.

Complexity of spatial search by quantum walk?

Discrete time quantum walk (DTQW)?



Classical Hitting time

Spatial search stops when x € M — Walk on an absorbing
Markov chain P’

Y

o Pxy X

y
Ghe @< Pxy x
Pz P
€ z z

HT(P, M) = Expected number of steps of P’ to reach some
x e M.

Complexity of spatial search by quantum walk?
Discrete time quantum walk (DTQW)?
Continuous-time quantum walk (CTQW)?




Framework

Let U = X\M.

y y

@< Pxy -~ Pxy

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)




Framework

Let U = X\M.

y

@< Pxy

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]



Framework

Let U = X\M.

y

@< Pxy

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]

For 0 < s < 1, stationary state: 7(s) & ((1 — s)mu 7m)-



Framework

Let U = X\M.

y

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]
For 0 < s < 1, stationary state: 7(s) & ((1 — s)mu 7m)-

If P is reversible = P(s) is reversible for 0 < s < 1.




Interpolating Markov Chains

P(s)=(1—-s)P+sP’, se[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.




Interpolating Markov Chains

P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.




Interpolating Markov Chains

P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).

- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).

- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].

- Same eigenvalues as P(s).




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < Ai(s) < Aa(s) < - An(s) = 1.
> Discriminant matrix of P(s): D(P(s)) = v/P(s) o P(s)".
- Dy(s) = V/po (5)pn(s).
- Spectral decomposition: D(P(s)) = 37, Ai(s) |vi(s)) (vi(s)].

- Same eigenvalues as P(s).

- |va(s)) = V/7(s) .




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.

» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).
- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].
- Same eigenvalues as P(s).

- |va(s)) = V/7(s) .
- Spectral gap: A(s) =1 — Ap_1(s).




The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O <\/HT+(P, M))

[Krovi, Magniez, Ozols, and Roland 2014]

HT* (P, M): Extended hitting time




The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O (N/HTJF(P, M))

[Krovi, Magniez, Ozols, and Roland 2014]

HT* (P, M): Extended hitting time

- For |M| =1, HT"(P, M) = HT(P, M) = Quadratic speedup for
unique marked node.




The known and the unknown

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M

marked nodes: O (N/HTJF(P, M))

[Krovi, Magniez, Ozols, and Roland 2014]

HT* (P, M): Extended hitting time

- For |M| =1, HT"(P, M) = HT(P, M) = Quadratic speedup for
unique marked node.

- For |[M| > 1, HT*(P, M) > HT(P, M).




The known and the unknown

Complexity of spatial search by DTQW
For any ergodic, reversible Markov chain P with a set of M

marked nodes: O (N/HTJF(P, M))

[Krovi, Magniez, Ozols, and Roland 2014]

HT* (P, M): Extended hitting time

- For |M| =1, HT"(P, M) = HT(P, M) = Quadratic speedup for
unique marked node.

- For |[M| > 1, HT*(P, M) > HT(P, M).

Complexity of spatial search by CTQW
No such general result known.

The algorithm by Childs and Goldstone has been applied to certain specific
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].




Main results

> For any ergodic, reversible Markov chain provide a spatial
search algorithm by CTQW that has a running time of

O(\/HT (P, M)).




Main results

> For any ergodic, reversible Markov chain provide a spatial
search algorithm by CTQW that has a running time of

O(\/HT (P, M)).

> State general conditions for the optimality of the Childs and
Goldstone algorithm on any ergodic, reversible Markov chain.




Main results

> For any ergodic, reversible Markov chain provide a spatial
search algorithm by CTQW that has a running time of

O(\/HT (P, M)).

> State general conditions for the optimality of the Childs and
Goldstone algorithm on any ergodic, reversible Markov chain.

» Compare the running time of our algorithm with the Childs
and Goldstone algorithm.




Continuous-time quantum walk on a graph

» Evolve a time-independent Hamiltonian, Hg, encoding the
connectivity of the underlying graph according to the
Schrédinger equation.




Continuous-time quantum walk on a graph

» Evolve a time-independent Hamiltonian, Hg, encoding the
connectivity of the underlying graph according to the
Schrédinger equation.

> Initial state: |t)




Continuous-time quantum walk on a graph

» Evolve a time-independent Hamiltonian, Hg, encoding the
connectivity of the underlying graph according to the
Schrédinger equation.

> Initial state: |t)

> Probability of the walker being in state [¢¢), after time t

p(t) = | (Wr] et o) |




Continuous-time quantum walk on a graph

» Evolve a time-independent Hamiltonian, Hg, encoding the
connectivity of the underlying graph according to the
Schrédinger equation.

> Initial state: |t)

> Probability of the walker being in state [¢¢), after time t

p(t) = | (r| e~ Mt [yo) 2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.

We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].




Search Hamiltonian

Interpolating Markov Chains
P(s)=(1—s)P+sP', se[0,1)
Discriminant matrix: Dy, (S) = \/Pxy () pyx(s)-

Same eigenvalues as P(s). Spectral gap: A(s) =1 — \,—1(s).

va(s)) = /7 (s) -

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V(s) € H x H :

V() [x,0) = > V/Py(s) Ix,¥) -

yeX




Search Hamiltonian

Interpolating Markov Chains

P(s)=(1—s)P+sP', s€[0,1)

Discriminant matrix: Dy, (S) = \/Pxy () pyx(s)-

Same eigenvalues as P(s). Spectral gap: A(s) =1 — \,—1(s).

va(s)) = /7 (s) -

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V(s) € H x H :
V() [x,0) = > V/Py(s) Ix,¥) -
yeX
If S|x,y) = |y, x), then observe that

(x, 01V (5)SV(5)ly,0) = v/P (5)Pa(5) = Dy (5).




Search Hamiltonian

Interpolating Markov Chains

P(s)=(1—s)P+sP', s€[0,1)

Discriminant matrix: Dy, (S) = \/Pxy () pyx(s)-

Same eigenvalues as P(s). Spectral gap: A(s) =1 — \,—1(s).

va(s)) = /7 (s) -

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V(s) € H x H :

V() [x,0) = > V/Py(s) Ix,¥) -

yeX
If S|x,y) = |y, x), then observe that

(x,0[VI(5)SV(s)]y,0) = \/Puy(5)Pyx(5) = Diy ().
If Mo =1®|0) (0],
H(s) = i[V'(5)SV(s), Mo].




Spectrum of H(s)

- |va(s),0) is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of H(s): 4/1 — X2_,(s) = O(\/A(s)).




Spectrum of H(s)

- |va(s),0) is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of H(s): 4/1 — X2_,(s) = O(\/A(s)).

Fors=s"=1—pu/(1— pm), |va(s")) = s

=37

W>J——%ﬁw
M) = —= 3" v <)

V' PM xeM




Algorithm
1. Prepare the state |v,(0)) |0).

2. Fors* =1—pu/(1 — pm) and T = O(y/HT+(P, M)), evolve

according to H(s™) for a time chosen uniformly at random between
[0, T].

3. Measure in the basis spanned by the state space, in the first register.




Algorithm
1. Prepare the state |v,(0)) |0).

2. Fors* =1—pu/(1 — pm) and T = O(y/HT+(P, M)), evolve

according to H(s™) for a time chosen uniformly at random between
[0, T].

3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s") kills coherence terms between
[va(s™)) and its orthogonal eigenstates.




Algorithm
1. Prepare the state |v,(0)) |0).

2. Fors* =1—pu/(1 — pm) and T = O(y/HT+(P, M)), evolve
according to H(s™) for a time chosen uniformly at random between
[0, T].

3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s") kills coherence terms between
[va(s™)) and its orthogonal eigenstates.

- We obtain a mixed state between |v,(s*)) and the rest.




Algorithm
1. Prepare the state |v,(0)) |0).
2. Fors* =1—pu/(1 — pm) and T = O(y/HT+(P, M)), evolve
according to H(s™) for a time chosen uniformly at random between

[0, T].

3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s") kills coherence terms between
[va(s™)) and its orthogonal eigenstates.

- We obtain a mixed state between |v,(s*)) and the rest.

- Expected running time: T




Spatial search by CTQW (Childs and Goldstone 2004)




Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1),...,|n)}

Oracle Hamiltonian: Horacle = |w) (w]|.

Dynamics is driven by the Hamiltonian H; = A, where A is the adjacency
matrix of the graph.




Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1),...,|n)}

Oracle Hamiltonian: Horacle = |w) (w]|.

Dynamics is driven by the Hamiltonian H; = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Hoacie + rH1  [r is a real number which we are free
to choose.]

Task: Find |w).
Given a graph G, algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G.

Thus [s) = 1/v/a Y, |i)-




Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1),...,|n)}

Oracle Hamiltonian: Horacle = |w) (w]|.

Dynamics is driven by the Hamiltonian H; = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Hoacie + rH1  [r is a real number which we are free
to choose.]

Task: Find |w).

Given a graph G, algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G.

Thus |s) =1/y/nY; |i).
2. Measure after T = O(+/n) in the basis of the nodes.




Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1),...,|n)}

Oracle Hamiltonian: Horacle = |w) (w]|.

Dynamics is driven by the Hamiltonian H; = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Hoacie + rH1  [r is a real number which we are free
to choose.]

Task: Find |w).

Given a graph G, algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G.

Thus [s) = 1/v/a Y, |i)-

2. Measure after T = O(y/n) in the basis of the nodes. If
Pu(T) =|(w|e ™" |s)|? = ©(1) = Optimal for G!




Complete graph:

Ai=1,i#]

Same as analog Grover
H = —|w) (w| —|s) (s|

=~ |w) {w] — ~A

Optimall T = O(v/n)




Complete graph: Hypercube:

Ai=1,i#]

Same as analog Grover

Optimal! T = O(y/n)

H = —|w)(w| —s) (s|

=~ |w) {w] — ~A

Optimall T = O(v/n)




Complete graph:
Aj=1i#]
Same as analog Grover
H = —|w) (w| —s) (s|

:_|W><W|—%A

Optimall T = O(v/n)

Hypercube:

Optimal! T = O(y/n)

Square Lattices:

d<3
No significant speed-up

d=14
T = O(+/nlog n)

d>4
Optimal! T = O(+/n)




Sufficient condition for the optimality of CG algorithm

Let Hg be a Hamiltonian with eigenvalues
AMm=1>XA\1=1-A>...>2X1 >0

(A > 0) such that Hg |vi) = \i|vi).




Sufficient condition for the optimality of CG algorithm

Let Hg be a Hamiltonian with eigenvalues
)\"=1>/\n71:1—A2...2)\120

(A > 0) such that Hg |vi) = \i|vi).

Search Hamiltonian: Hseareh = |w) (w| + rHg.

Let |w) =37, ai |vi) and | (w|va) | = an| = V.



Sufficient condition for the optimality of CG algorithm

Let Hg be a Hamiltonian with eigenvalues
Mm=1>Xa=1-A>...2X2>0

(A > 0) such that Hg |V,'> =N |V,'>.

Search Hamiltonian: Hseareh = |w) (w| + rHg.
Let [w) = 3", ai [vi) and | (w|va) | = |an| = Ve.
|2

a2 Sign 1
Optimal r = Z = : Yy and Max. amplitude v = —=Z"1-A

. / lail2
i#n Zi;én (1jA[)2




Sufficient condition for the optimality of CG algorithm

Let Hg be a Hamiltonian with eigenvalues
Mm=1>Xa=1-A>...2X2>0

(A > 0) such that Hg |V,'> =N |V,'>.

Search Hamiltonian: Hseareh = |w) (w| + rHg.

Let (w) = >, ai|vi) and | (w|va) | = |aa| = Ve
12 o lal?
Optimal r = Z 1|‘i|)\i and Max. amplitude v = 2’7"’71—’\

. / lail2
i#n Zi;én (1jA[)2

Restriction: /¢ < rA/v, Initial state: |v,), Running time: T = © (\/121,) .

Final state: |f) such that | (w|f)| =~ v.



Sufficient condition for the optimality of CG algorithm

Let Hg be a Hamiltonian with eigenvalues
Mm=1>Xa=1-A>...2X2>0

(A > 0) such that Hg |V,'> =N |V,'>.

Search Hamiltonian: Hseareh = |w) (w| + rHg.

Let (w) = >, ai|vi) and | (w|va) | = |aa| = Ve
12 o lal?
Optimal r = Z 1|‘i|)\i and Max. amplitude v = 2’7"’71—’\

. / lail2
i#n Zi;én (1jA[)2

Restriction: /¢ < rA/v, Initial state: |v,), Running time: T = © (\/121,) .

Final state: |f) such that | (w|f)| =~ v.

1
Appl 1 d f litud lification: Tsearc — & ~ |-
pply O(1/v) rounds of amplitude amplification h O(zﬁﬁ)




[(wlf)| = v, | (wlva) | = |an| = Ve

1
Tsearc - — ]| -
=0 (l/zx/E )




[(wlf)| = v, | (wlva) | = |an| = Ve

1
Tsearc - — ]| -
=0 ( v2y/e )

Whenever v = e(l), Tsearch = O(l/\/g)




[(wlf) | = v, [(wlvn) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0(1) [C, Novo, Ambainis and Omar 2016].



[(wlf) | = v, [(wlvn) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0O(1) [C, Novo, Ambainis and Omar 2016]. Optimal!



[(wlf) | = v, [(wlvn) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0O(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

> v can be ©(1) even when A # O(1)

- For d-dimensional lattices with d > 4, A ~ n~2/9 but
v =0(1).



[(wlf) | = v, [(wlvn) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0O(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

> v can be ©(1) even when A # O(1)

- For d-dimensional lattices with d > 4, A ~ n~2/9 but
v = ©(1). Optimal!

- Atd=4,v=0(1/\logn) = Teearch = O(+/nlog n).



[(wlf) | = v, [(wlva) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0O(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

> v can be ©(1) even when A # O(1)

- For d-dimensional lattices with d > 4, A ~ n~2/9 but
v = ©(1). Optimal!

- Atd=4,v=0(1/\logn) = Teearch = O(+/nlog n).

» Algorithm is optimal for any symmetric P having v = ©(1).




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/€>

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/€>

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.

> We show that Q(vA) < v < 1.

- HT(P,w) < L.




Drawbacks of the CG algorithm
r=> i w Hwif) [ = v, [(w|va) | = [an] = V€

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.

> We show that Q(vA) < v < 1.
- HT(P,w) < A. So when v = /A = Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w, 0) (w,0| 4 rH;.




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w, 0) (w,0| 4+ rH:. Does not work as critical value of r = 0.




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w, 0) (w,0| 4+ rH:. Does not work as critical value of r = 0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = — ‘W70> <W70‘ Hy — Hy |W,0> <W70| 5




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w, 0) (w,0| 4+ rH:. Does not work as critical value of r = 0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = — ‘W70> <W70‘ Hy — Hy |W,0> <W70| 5
Example: If H; is the adjacency matrix of the graph, Hoacle removes the edges

connected to the marked node.




CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w,0) (w,0| 4+ rHy. Does not work as critical value of r = 0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = = ‘W70> <W70‘ H1 — H1 |W,0> <W70| .
Example: If H; is the adjacency matrix of the graph, Hoacle removes the edges

connected to the marked node.

Use the search Hamiltonian
Hsearch = — |w, 0) (w, 0| Hy — Hi1 |w,0) (w,0| + Hi
to rotate from |v,, 0) to the state

Hy [w)

%) = T lw) T







» Amplitude amplification results in the state |w) and so

Veeeraty = © (Hz/\/g) .

> Also e "2 |i7) = |w,0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).




» Amplitude amplification results in the state |w) and so

Tsearch =0 (/142/\/;) .

> Also e/t Horcle |ii7) = |w, 0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).




» Amplitude amplification results in the state |w) and so

Tsearch =0 (MZ/\/E) .

> Also e/t Horcle |ii7) = |w, 0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).

Improvement over the CG algorithm

» Whenever CG algorithm is optimal, so is CG'.



» Amplitude amplification results in the state |w) and so

Tsearch =0 (,uz/\/g) .

> Also e/t Horcle |ii7) = |w, 0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).
Improvement over the CG algorithm

» Whenever CG algorithm is optimal, so is CG'.

» For 2d-lattices, CG’ algorithm has a running time of
Tsearch = O(\/E |Og n).



» Amplitude amplification results in the state |w) and so

Tsearch =0 (,uz/\/g) .

> Also e/t Horcle |ii7) = |w, 0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).
Improvement over the CG algorithm

» Whenever CG algorithm is optimal, so is CG'.

» For 2d-lattices, CG’ algorithm has a running time of
Teearch = O(y/nlog n). Our algorithm: O(y/nlog n).




Conclusions

> Spatial search algorithm by CTQW that runs in
©(y/HT*(P,M)) time on any ergodic, reversible Markov
chain.

» Provided general conditions for the optimality of the spatial
search algorithm by Childs and Goldstone

» Applicable to only state-transitive Markov chains.

» Sub-optimal.

» Improved the Childs and Goldstone algorithm to be applicable
to any ergodic, reversible Markov chain.




Open questions:

Extended hitting time vs hitting time




Open questions:

Extended hitting time vs hitting time

Future work:




Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an
ergodic, reversible Markov chain.




Thank you for your attention!

For more details see:
S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph
by continuous time quantum walk, arXiv:1807.05957 (2018).




