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Classical random walk on a graph

Pxy

- Classical random walk on a discrete state space X, such that |X| = n.

- Described by a n x n stochastic matrix P such that its (x, y)"™ entry is
Pxy -

- If the row-vector v is the initial state of the walker, after t-steps:
ve = v PL.

- Stationary state: row vector m such that 7 = 7P.
- Assumptions: P is ergodic

> Eigenvalues of P lie between —1 and 1.

> 7 is unique.
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Set of marked nodes:
P M C X.

Hitting time: Starting from some random node x ~ m, the expected number of
steps to reach some node € M.

Spatial search (classical)

1. Sample x € X from 7.

2. Check if x € M.

3. If x € M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step
4 is executed.
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HT(P, M) = Expected number of steps of P’ to reach some
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Complexity of spatial search by quantum walk?
Discrete time quantum walk (DTQW)?
Continuous-time quantum walk (CTQW)?




Framework

Let U = X\M.

y y

@< Pxy -~ Pxy

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)




Framework

Let U = X\M.

y

@< Pxy

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]



Framework

Let U = X\M.

y

@< Pxy

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]

For 0 < s < 1, stationary state: 7(s) & ((1 — s)mu 7m)-



Framework

Let U = X\M.

y

5
5 <

m=(my 7m) 7" oc (0 wm) (P’ is not ergodic)
Additional assumption: P is reversible = mp,, = m,pyx, V(x,y) € X.

Interpolating Markov Chains
P(s)=(1—s)P+sP’, se[0,1]
For 0 < s < 1, stationary state: 7(s) & ((1 — s)mu 7m)-

If P is reversible = P(s) is reversible for 0 < s < 1.




Interpolating Markov Chains

P(s)=(1—-s)P+sP’, se[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.




Interpolating Markov Chains

P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.




Interpolating Markov Chains

P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).

- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.
» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).

- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].

- Same eigenvalues as P(s).




Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
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If P is reversible = P(s) is reversible for 0 <s < 1.
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Interpolating Markov Chains
P(s)=(1—s)P+sP’, s€[0,1]
For 0 < s < 1, stationary state: 7(s) o ((1 — s)mu mm).

If P is reversible = P(s) is reversible for 0 <s < 1.

We will work with
> Lazy walk: (I + P(s))/2

- Eigenvalues: 0 < A1(s) < A2(s) <---An(s) =1.

» Discriminant matrix of P(s): D(P(s)) = \/P(s)o P(s)".
- Dy (s) = /Pxy(5)pyx(5).
- Spectral decomposition: D(P(s)) = >_7_; Ai(s) |vi(s)) (vi(s)].
- Same eigenvalues as P(s).

- |va(s)) = V/7(s) .
- Spectral gap: A(s) =1 — Ap_1(s).
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The known and the unknown

Complexity of spatial search by DTQW
For any ergodic, reversible Markov chain P with a set of M

marked nodes: O (N/HTJF(P, M))

[Krovi, Magniez, Ozols, and Roland 2014]

HT* (P, M): Extended hitting time

- For |M| =1, HT"(P, M) = HT(P, M) = Quadratic speedup for
unique marked node.

- For |[M| > 1, HT*(P, M) > HT(P, M).

Complexity of spatial search by CTQW
No such general result known.

The algorithm by Childs and Goldstone has been applied to certain specific
graphs such as d-dimensional lattices, hypercubes and others [Childs and
Goldstone 2004 and several subsequent papers].
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Main results

> For any ergodic, reversible Markov chain provide a spatial
search algorithm by CTQW that has a running time of

O(\/HT (P, M)).

> State general conditions for the optimality of the Childs and
Goldstone algorithm on any ergodic, reversible Markov chain.

» Compare the running time of our algorithm with the Childs
and Goldstone algorithm.
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Continuous-time quantum walk on a graph

» Evolve a time-independent Hamiltonian, Hg, encoding the
connectivity of the underlying graph according to the
Schrédinger equation.

> Initial state: |t)

> Probability of the walker being in state [¢¢), after time t

p(t) = | (r| e~ Mt [yo) 2.

Task

Convert a graph (or a Markov chain) to a Hamiltonian.

We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010].
Also used to develop an adiabatic version of quantum spatial search [Krovi,
Ozols and Roland 2010].
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Search Hamiltonian

Interpolating Markov Chains

P(s)=(1—s)P+sP', s€[0,1)

Discriminant matrix: Dy, (S) = \/Pxy () pyx(s)-

Same eigenvalues as P(s). Spectral gap: A(s) =1 — \,—1(s).

va(s)) = /7 (s) -

H : n-dimensional Hilbert space whose basis states are labelled by the vertices
of P.

Consider a unitary V(s) € H x H :

V() [x,0) = > V/Py(s) Ix,¥) -

yeX
If S|x,y) = |y, x), then observe that

(x,0[VI(5)SV(s)]y,0) = \/Puy(5)Pyx(5) = Diy ().
If Mo =1®|0) (0],
H(s) = i[V'(5)SV(s), Mo].
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Spectrum of H(s)

- |va(s),0) is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of H(s): 4/1 — X2_,(s) = O(\/A(s)).

Fors=s"=1—pu/(1— pm), |va(s")) = s

=37

W>J——%ﬁw
M) = —= 3" v <)

V' PM xeM
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Algorithm
1. Prepare the state |v,(0)) |0).
2. Fors* =1—pu/(1 — pm) and T = O(y/HT+(P, M)), evolve
according to H(s™) for a time chosen uniformly at random between

[0, T].

3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of H(s") kills coherence terms between
[va(s™)) and its orthogonal eigenstates.

- We obtain a mixed state between |v,(s*)) and the rest.

- Expected running time: T
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Spatial search by CTQW (Childs and Goldstone 2004)

Hilbert space spanned by the nodes of a graph G {|1),...,|n)}

Oracle Hamiltonian: Horacle = |w) (w]|.

Dynamics is driven by the Hamiltonian H; = A, where A is the adjacency
matrix of the graph.

Search Hamiltonian: H = Hoacie + rH1  [r is a real number which we are free
to choose.]

Task: Find |w).

Given a graph G, algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G.

Thus [s) = 1/v/a Y, |i)-

2. Measure after T = O(y/n) in the basis of the nodes. If
Pu(T) =|(w|e ™" |s)|? = ©(1) = Optimal for G!




Complete graph:

Ai=1,i#]

Same as analog Grover
H = —|w) (w| —|s) (s|

=~ |w) {w] — ~A

Optimall T = O(v/n)




Complete graph: Hypercube:

Ai=1,i#]

Same as analog Grover

Optimal! T = O(y/n)
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Complete graph:
Aj=1i#]
Same as analog Grover
H = —|w) (w| —s) (s|

:_|W><W|—%A

Optimall T = O(v/n)

Hypercube:

Optimal! T = O(y/n)

Square Lattices:

d<3
No significant speed-up

d=14
T = O(+/nlog n)

d>4
Optimal! T = O(+/n)
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Let Hg be a Hamiltonian with eigenvalues
Mm=1>Xa=1-A>...2X2>0

(A > 0) such that Hg |V,'> =N |V,'>.

Search Hamiltonian: Hseareh = |w) (w| + rHg.
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[(wlf) | = v, [(wlva) | = |an| = Ve

1
Tsearc - — ~ |-
=9 ( v x/E)

Whenever v = ©(1), Teearch = O(1//€).

> When A =0(1), v =06(1)

- Hg is the adjacency matrix of a regular graph (e = 1/n) with
A = 0O(1) [C, Novo, Ambainis and Omar 2016]. Optimal!

> v can be ©(1) even when A # O(1)

- For d-dimensional lattices with d > 4, A ~ n~2/9 but
v = ©(1). Optimal!

- Atd=4,v=0(1/\logn) = Teearch = O(+/nlog n).

» Algorithm is optimal for any symmetric P having v = ©(1).




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/€>

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.




Drawbacks of the CG algorithm

N2
r=Y, WL | (wif) |~ v, | (wlva) | = |an| = Ve

1
Tsearc - > ~ |-
= ( v \/€>

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.

> We show that Q(vA) < v < 1.

- HT(P,w) < L.




Drawbacks of the CG algorithm
r=> i w Hwif) [ = v, [(w|va) | = [an] = V€

1
Tsearc - > ~ |-
= ( v \/E)

> Predicting r requires knowledge of solution unless P is also
state-transitive.

» The condition /e < rA/v needs to be satisfied.

- Does not hold for lattices of dimension less than four.

> We show that Q(vA) < v < 1.
- HT(P,w) < A. So when v = /A = Sub-optimal!

- Tsearch is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard
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CG algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamilto-
nian, i.e. Hy = i[VISV, M.

One possibility: |w,0) (w,0| 4+ rHy. Does not work as critical value of r = 0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs
and Ge 2014]

Horacle = = ‘W70> <W70‘ H1 — H1 |W,0> <W70| .
Example: If H; is the adjacency matrix of the graph, Hoacle removes the edges

connected to the marked node.

Use the search Hamiltonian
Hsearch = — |w, 0) (w, 0| Hy — Hi1 |w,0) (w,0| + Hi
to rotate from |v,, 0) to the state

Hy [w)

%) = T lw) T







» Amplitude amplification results in the state |w) and so
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» Amplitude amplification results in the state |w) and so

Tsearch =0 (,uz/\/g) .

> Also e/t Horcle |ii7) = |w, 0), where t' = O(u). So O(y) additional
queries to the oracle are needed to obtain |w).
Improvement over the CG algorithm

» Whenever CG algorithm is optimal, so is CG'.

» For 2d-lattices, CG’ algorithm has a running time of
Teearch = O(y/nlog n). Our algorithm: O(y/nlog n).




Conclusions

> Spatial search algorithm by CTQW that runs in
©(y/HT*(P,M)) time on any ergodic, reversible Markov
chain.

» Provided general conditions for the optimality of the spatial
search algorithm by Childs and Goldstone

» Applicable to only state-transitive Markov chains.

» Sub-optimal.

» Improved the Childs and Goldstone algorithm to be applicable
to any ergodic, reversible Markov chain.
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Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an
ergodic, reversible Markov chain.




Thank you for your attention!

For more details see:
S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph
by continuous time quantum walk, arXiv:1807.05957 (2018).




