Finding a marked node on any graph by continuous-time quantum walk

Shantanav Chakraborty, Leonardo Novo, Jérémie Roland

arXiv:1807.05957

QuIC, Université libre de Bruxelles

ICoQC Paris

November 26, 2018

- Classical random walk on a discrete state space X, such that |X| = n.
- Described by a $n \times n$ stochastic matrix P such that its $(x, y)^{\mathrm{th}}$ entry is $p_{xy}.$
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.

- Classical random walk on a discrete state space X, such that |X| = n.
- Described by a $n \times n$ stochastic matrix P such that its $(x, y)^{\mathrm{th}}$ entry is $p_{xy}.$
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Stationary state: row vector π such that $\pi = \pi P$.

- Classical random walk on a discrete state space X, such that |X| = n.
- Described by a $n \times n$ stochastic matrix P such that its $(x, y)^{\mathrm{th}}$ entry is $p_{xy}.$
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Stationary state: row vector π such that $\pi = \pi P$.
- Assumptions: P is ergodic

- Classical random walk on a discrete state space X, such that |X| = n.
- Described by a $n \times n$ stochastic matrix P such that its $(x, y)^{\text{th}}$ entry is p_{xy} .
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Stationary state: row vector π such that $\pi = \pi P$.
- Assumptions: P is ergodic
 - ▶ Eigenvalues of *P* lie between −1 and 1.
 - \blacktriangleright π is unique.

Set of marked nodes: $M \subseteq X$.

Set of marked nodes: $M \subseteq X$.

Hitting time: Starting from some random node $x \sim \pi$, the expected number of steps to reach some node $\in M$.

Set of marked nodes: $M \subseteq X$.

Hitting time: Starting from some random node $x \sim \pi$, the expected number of steps to reach some node $\in M$.

Spatial search (classical)

- **1**. Sample $x \in X$ from π .
- **2.** Check if $x \in M$.
- **3**. If $x \in M$, output x
- 4. Otherwise update x according to P and go to step 2.

Set of marked nodes: $M \subseteq X$.

Hitting time: Starting from some random node $x \sim \pi$, the expected number of steps to reach some node $\in M$.

Spatial search (classical)

- **1**. Sample $x \in X$ from π .
- **2.** Check if $x \in M$.
- **3**. If $x \in M$, output x
- 4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step 4 is executed.

Spatial search stops when $x \in M \implies$ Walk on an absorbing Markov chain P'

Spatial search stops when $x \in M \implies$ Walk on an absorbing Markov chain P'

Spatial search stops when $x \in M \implies$ Walk on an absorbing Markov chain P'

 $HT(P, M) = Expected number of steps of P' to reach some x \in M$.

Complexity of spatial search by quantum walk?

Spatial search stops when $x \in M \implies$ Walk on an absorbing Markov chain P'

 $HT(P, M) = Expected number of steps of P' to reach some x \in M$.

Complexity of spatial search by **quantum walk**? Discrete time quantum walk (DTQW)?

Spatial search stops when $x \in M \implies$ Walk on an absorbing Markov chain P'

 $HT(P, M) = Expected number of steps of P' to reach some x \in M$.

Complexity of spatial search by **quantum walk**? Discrete time quantum walk (DTQW)? Continuous-time quantum walk (CTQW)?

Let $U = X \setminus M$.

$$\pi = (\pi_U \ \pi_M)$$

 $\pi' \propto (0 \ \pi_M) \ (P' \ {
m is not ergodic})$

Let $U = X \setminus M$.

 $\pi = (\pi_U \ \pi_M)$

 $\pi' \propto (0 \ \pi_M) \ (P' \ {
m is not ergodic})$

Additional assumption: P is reversible $\implies \pi_x p_{xy} = \pi_y p_{yx}, \ \forall (x, y) \in X.$

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1]$

Let $U = X \setminus M$.

 $\pi = (\pi_U \ \pi_M)$

 $\pi' \propto (0 \ \pi_M) \ (P' \ {
m is not ergodic})$

Additional assumption: P is reversible $\implies \pi_x p_{xy} = \pi_y p_{yx}, \forall (x, y) \in X.$

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1]$ For $0 \le s < 1$, stationary state: $\pi(s) \propto ((1 - s)\pi_U \ \pi_M)$.

Let $U = X \setminus M$.

 $\pi = (\pi_U \ \pi_M)$

 $\pi' \propto (0 \ \pi_M) \ (P' \ {
m is not ergodic})$

Additional assumption: P is reversible $\implies \pi_x p_{xy} = \pi_y p_{yx}, \ \forall (x, y) \in X.$

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1]$ For $0 \le s < 1$, stationary state: $\pi(s) \propto ((1 - s)\pi_U \ \pi_M)$.If P is reversible $\implies P(s)$ is reversible for $0 \le s < 1$.

Interpolating Markov Chains

 $P(s) = (1 - s)P + sP', \ s \in [0, 1]$

For $0 \leq s < 1$, stationary state: $\pi(s) \propto ((1-s)\pi_U \ \pi_M)$.

If P is reversible $\implies P(s)$ is reversible for $0 \le s < 1$.

We will work with

- Eigenvalues:
$$0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$$

We will work with

- Eigenvalues:
$$0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$$

-
$$D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}$$
.

We will work with

- Eigenvalues:
$$0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$$

$$- D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}.$$

- Spectral decomposition:
$$D(P(s)) = \sum_{i=1}^n \lambda_i(s) \ket{v_i(s)} ig v_i(s)|.$$

We will work with

- Eigenvalues: $0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$

$$- D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}.$$

- Spectral decomposition: $D(P(s)) = \sum_{i=1}^{n} \lambda_i(s) |v_i(s)\rangle \langle v_i(s)|.$
- Same eigenvalues as P(s).

We will work with

- Eigenvalues: $0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$

$$- D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}.$$

- Spectral decomposition: $D(P(s)) = \sum_{i=1}^n \lambda_i(s) \ket{v_i(s)} \langle v_i(s) |.$
- Same eigenvalues as P(s).
- $|v_n(s)\rangle = \sqrt{\pi(s)^T}$.

We will work with

- Eigenvalues: $0 < \lambda_1(s) \leq \lambda_2(s) \leq \cdots \lambda_n(s) = 1.$

$$- D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}.$$

- Spectral decomposition: $D(P(s)) = \sum_{i=1}^n \lambda_i(s) \ket{v_i(s)} \langle v_i(s) |.$
- Same eigenvalues as P(s).
- $|v_n(s)\rangle = \sqrt{\pi(s)^T}$.
- Spectral gap: $\Delta(s) = 1 \lambda_{n-1}(s)$.

Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain P with a set of M marked nodes: $\mathcal{O}\left(\sqrt{HT^+(P, M)}\right)$. [Krovi, Magniez, Ozols, and Roland 2014]

 $HT^+(P, M)$: Extended hitting time

Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain P with a set of M marked nodes: $\mathcal{O}\left(\sqrt{HT^+(P, M)}\right)$. [Krovi, Magniez, Ozols, and Roland 2014]

 $HT^+(P, M)$: Extended hitting time

- For |M| = 1, $HT^+(P, M) = HT(P, M) \implies$ Quadratic speedup for unique marked node.

Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain P with a set of M marked nodes: $\mathcal{O}\left(\sqrt{HT^+(P, M)}\right)$. [Krovi, Magniez, Ozols, and Roland 2014]

 $HT^+(P, M)$: Extended hitting time

- For |M| = 1, $HT^+(P, M) = HT(P, M) \implies$ Quadratic speedup for unique marked node.

- For
$$|M| > 1$$
, $HT^+(P, M) \ge HT(P, M)$.

Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain P with a set of M marked nodes: $\mathcal{O}\left(\sqrt{HT^+(P, M)}\right)$. [Krovi, Magniez, Ozols, and Roland 2014]

 $HT^+(P, M)$: Extended hitting time

- For |M| = 1, $HT^+(P, M) = HT(P, M) \implies$ Quadratic speedup for unique marked node.
- For |M| > 1, $HT^+(P, M) \ge HT(P, M)$.

Complexity of spatial search by CTQW

No such general result known.

The algorithm by Childs and Goldstone has been applied to certain specific graphs such as *d*-dimensional lattices, hypercubes and others [Childs and Goldstone 2004 and several subsequent papers].

Main results

For any ergodic, reversible Markov chain provide a spatial search algorithm by CTQW that has a running time of $\Theta(\sqrt{HT^+(P, M)})$.

Main results

- For any ergodic, reversible Markov chain provide a spatial search algorithm by CTQW that has a running time of $\Theta(\sqrt{HT^+(P, M)})$.
- State general conditions for the optimality of the Childs and Goldstone algorithm on any ergodic, reversible Markov chain.

Main results

- For any ergodic, reversible Markov chain provide a spatial search algorithm by CTQW that has a running time of $\Theta(\sqrt{HT^+(P, M)})$.
- State general conditions for the optimality of the Childs and Goldstone algorithm on any ergodic, reversible Markov chain.
- Compare the running time of our algorithm with the Childs and Goldstone algorithm.

Continuous-time quantum walk on a graph

Evolve a time-independent Hamiltonian, H_G, encoding the connectivity of the underlying graph according to the Schrödinger equation.

Continuous-time quantum walk on a graph

- Evolve a time-independent Hamiltonian, H_G, encoding the connectivity of the underlying graph according to the Schrödinger equation.
- \blacktriangleright Initial state: $|\psi_0
 angle$

Continuous-time quantum walk on a graph

- Evolve a time-independent Hamiltonian, H_G, encoding the connectivity of the underlying graph according to the Schrödinger equation.
- \blacktriangleright Initial state: $|\psi_0
 angle$

 \blacktriangleright Probability of the walker being in state $|\psi_f
angle$, after time t

$$p(t) = |\langle \psi_f | e^{-iH_G t} |\psi_0 \rangle|^2.$$
Continuous-time quantum walk on a graph

- Evolve a time-independent Hamiltonian, H_G, encoding the connectivity of the underlying graph according to the Schrödinger equation.
- \blacktriangleright Initial state: $|\psi_0
 angle$
- Probability of the walker being in state | ψ_f ⟩, after time t

$$p(t) = |\langle \psi_f | e^{-iH_G t} |\psi_0 \rangle|^2.$$

Task

Convert a graph (or a Markov chain) to a Hamiltonian. We will use the formalism of Somma and Ortiz [Somma and Ortiz 2010]. Also used to develop an adiabatic version of quantum spatial search [Krovi, Ozols and Roland 2010].

Search Hamiltonian

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1)$ Discriminant matrix: $D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}$. Same eigenvalues as P(s). Spectral gap: $\Delta(s) = 1 - \lambda_{n-1}(s)$. $|v_n(s)\rangle = \sqrt{\pi(s)^T}$.

 $\mathcal{H}:$ n-dimensional Hilbert space whose basis states are labelled by the vertices of $\mathcal{P}.$

Consider a unitary $V(s) \in \mathcal{H} imes \mathcal{H}$:

$$V(s) \ket{x,0} = \sum_{y \in X} \sqrt{p_{xy}(s)} \ket{x,y}.$$

Search Hamiltonian

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1)$ Discriminant matrix: $D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}$. Same eigenvalues as P(s). Spectral gap: $\Delta(s) = 1 - \lambda_{n-1}(s)$. $|v_n(s)\rangle = \sqrt{\pi(s)^T}$.

 $\mathcal{H}:$ n-dimensional Hilbert space whose basis states are labelled by the vertices of $\mathcal{P}.$

Consider a unitary $V(s) \in \mathcal{H} imes \mathcal{H}$:

$$V(s) \ket{x,0} = \sum_{y \in X} \sqrt{p_{xy}(s)} \ket{x,y}.$$

If $S | x, y \rangle = | y, x \rangle$, then observe that

$$\langle x, 0 | V^{\dagger}(s) SV(s) | y, 0 \rangle = \sqrt{p_{xy}(s)p_{yx}(s)} = D_{xy}(s).$$

Search Hamiltonian

Interpolating Markov Chains $P(s) = (1 - s)P + sP', s \in [0, 1)$ Discriminant matrix: $D_{xy}(s) = \sqrt{p_{xy}(s)p_{yx}(s)}$. Same eigenvalues as P(s). Spectral gap: $\Delta(s) = 1 - \lambda_{n-1}(s)$. $|v_n(s)\rangle = \sqrt{\pi(s)^T}$.

 $\mathcal{H}:$ n-dimensional Hilbert space whose basis states are labelled by the vertices of $\mathcal{P}.$

Consider a unitary $V(s) \in \mathcal{H} imes \mathcal{H}$:

$$V(s) \ket{x,0} = \sum_{y \in X} \sqrt{p_{xy}(s)} \ket{x,y}.$$

If $S \ket{x,y} = \ket{y,x}$, then observe that

$$\langle x, 0 | V^{\dagger}(s) SV(s) | y, 0 \rangle = \sqrt{p_{xy}(s) p_{yx}(s)} = D_{xy}(s).$$

 $\text{If }\Pi_{0}=I\otimes\left|0\right\rangle\left\langle 0\right|,$

$$H(s) = i[V^{\dagger}(s)SV(s), \Pi_0].$$

Spectrum of H(s)

- $|v_n(s), 0\rangle$ is an eigenstate of H(s) with eigenvalue 0.

- Spectral gap of
$$H(s)$$
: $\sqrt{1-\lambda_{n-1}^2(s)}=\Theta(\sqrt{\Delta(s)}).$

Spectrum of H(s)

- $|v_n(s), 0\rangle$ is an eigenstate of H(s) with eigenvalue 0.
- Spectral gap of H(s): $\sqrt{1-\lambda_{n-1}^2(s)}=\Theta(\sqrt{\Delta(s)}).$

For
$$s = s^* = 1 - p_M/(1 - p_M)$$
, $|v_n(s^*)\rangle = \frac{|U\rangle + |M\rangle}{\sqrt{2}}$.

$$p_{M} = \sum_{x \in M} \pi_{x}$$
$$|U\rangle = \frac{1}{\sqrt{1 - p_{M}}} \sum_{x \notin M} \sqrt{\pi_{x}} |x\rangle$$
$$|M\rangle = \frac{1}{\sqrt{p_{M}}} \sum_{x \in M} \sqrt{\pi_{x}} |x\rangle$$

1. Prepare the state $|v_n(0)\rangle |0\rangle$.

- 2. For $s^* = 1 p_M/(1 p_M)$ and $T = \Theta(\sqrt{HT^+(P, M)})$, evolve according to $H(s^*)$ for a time chosen uniformly at random between [0, T].
- 3. Measure in the basis spanned by the state space, in the first register.

1. Prepare the state $|v_n(0)\rangle |0\rangle$.

- 2. For $s^* = 1 p_M/(1 p_M)$ and $T = \Theta(\sqrt{HT^+(P, M)})$, evolve according to $H(s^*)$ for a time chosen uniformly at random between [0, T].
- 3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of $H(s^*)$ kills coherence terms between $|v_n(s^*)\rangle$ and its orthogonal eigenstates.

1. Prepare the state $|v_n(0)\rangle |0\rangle$.

- 2. For $s^* = 1 p_M/(1 p_M)$ and $T = \Theta(\sqrt{HT^+(P, M)})$, evolve according to $H(s^*)$ for a time chosen uniformly at random between [0, T].
- 3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of $H(s^*)$ kills coherence terms between $|v_n(s^*)\rangle$ and its orthogonal eigenstates.
- We obtain a mixed state between $|v_n(s^*)\rangle$ and the rest.

1. Prepare the state $|v_n(0)\rangle |0\rangle$.

- 2. For $s^* = 1 p_M/(1 p_M)$ and $T = \Theta(\sqrt{HT^+(P, M)})$, evolve according to $H(s^*)$ for a time chosen uniformly at random between [0, T].
- 3. Measure in the basis spanned by the state space, in the first register.

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of $H(s^*)$ kills coherence terms between $|v_n(s^*)\rangle$ and its orthogonal eigenstates.
- We obtain a mixed state between $|v_n(s^*)
 angle$ and the rest.
- Expected running time: T

Hilbert space spanned by the nodes of a graph G $\{|1\rangle, \ldots, |n\rangle\}$ Oracle Hamiltonian: $H_{oracle} = |w\rangle \langle w|$.

Dynamics is driven by the Hamiltonian $H_1 = A$, where A is the adjacency matrix of the graph.

Hilbert space spanned by the nodes of a graph G $\{|1\rangle, \ldots, |n\rangle\}$ Oracle Hamiltonian: $H_{oracle} = |w\rangle \langle w|$.

Dynamics is driven by the Hamiltonian $H_1 = A$, where A is the adjacency matrix of the graph.

Search Hamiltonian: $H = H_{oracle} + rH_1$ [r is a real number which we are free to choose.]

Task: Find $|w\rangle$.

Given a graph G, algorithm involves the following steps:

1. Prepare the initial state to be the equal superposition of all nodes of G. Thus $|s\rangle = 1/\sqrt{n}\sum_i |i\rangle$.

Hilbert space spanned by the nodes of a graph G $\{|1\rangle, \ldots, |n\rangle\}$ Oracle Hamiltonian: $H_{oracle} = |w\rangle \langle w|$.

Dynamics is driven by the Hamiltonian $H_1 = A$, where A is the adjacency matrix of the graph.

Search Hamiltonian: $H = H_{oracle} + rH_1$ [r is a real number which we are free to choose.]

Task: Find $|w\rangle$.

Given a graph G, algorithm involves the following steps:

- 1. Prepare the initial state to be the equal superposition of all nodes of G. Thus $|s\rangle = 1/\sqrt{n}\sum_i |i\rangle$.
- 2. Measure after $T = O(\sqrt{n})$ in the basis of the nodes.

Hilbert space spanned by the nodes of a graph G $\{|1\rangle, \ldots, |n\rangle\}$ Oracle Hamiltonian: $H_{oracle} = |w\rangle \langle w|$.

Dynamics is driven by the Hamiltonian $H_1 = A$, where A is the adjacency matrix of the graph.

Search Hamiltonian: $H = H_{oracle} + rH_1$ [r is a real number which we are free to choose.]

Task: Find $|w\rangle$.

Given a graph G, algorithm involves the following steps:

- 1. Prepare the initial state to be the equal superposition of all nodes of G. Thus $|s\rangle = 1/\sqrt{n}\sum_i |i\rangle$.
- 2. Measure after $T = \mathcal{O}(\sqrt{n})$ in the basis of the nodes. If $P_w(T) = |\langle w| e^{-iAT} |s\rangle|^2 = \Theta(1) \implies \text{Optimal for G}!$

Complete graph:

$$A_{ij} = 1, i \neq j$$

Same as analog Grover

$$H = - |w\rangle \langle w| - |s\rangle \langle s|$$
$$= - |w\rangle \langle w| - \frac{1}{n}A$$

Optimal! $T = O(\sqrt{n})$

Complete graph:

Hypercube:

Optimal! $T = O(\sqrt{n})$

$$A_{ij} = 1, i \neq j$$

Same as analog Grover

$$H = - |w\rangle \langle w| - |s\rangle \langle s|$$
$$= - |w\rangle \langle w| - \frac{1}{n}A$$

Optimal! $T = O(\sqrt{n})$

Complete graph:

$$A_{ij} = 1, i \neq j$$

Same as analog Grover

$$H = - |w\rangle \langle w| - |s\rangle \langle s|$$
$$= - |w\rangle \langle w| - \frac{1}{n}A$$

Optimal! $T = O(\sqrt{n})$

Optimal! $T = O(\sqrt{n})$

Square Lattices:

 $d \leq 3$ No significant speed-up d = 4

$$T = O(\sqrt{n} \log n)$$

d > 4Optimal! $T = O(\sqrt{n})$

Hypercube:

Sufficient condition for the optimality of $\mathcal{C}\mathcal{G}$ algorithm

Let H_G be a Hamiltonian with eigenvalues

$$\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta \ge \ldots \ge \lambda_1 \ge 0$$

 $(\Delta > 0)$ such that $H_G \ket{v_i} = \lambda_i \ket{v_i}$.

Sufficient condition for the optimality of \mathcal{CG} algorithm

Let H_G be a Hamiltonian with eigenvalues

$$\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta \ge \ldots \ge \lambda_1 \ge 0$$

 $(\Delta > 0)$ such that $H_G |v_i\rangle = \lambda_i |v_i\rangle$.

Search Hamiltonian: $H_{\text{search}} = \ket{w} \langle w \end{vmatrix} + r H_G$.

Let $|w\rangle = \sum_{i} a_{i} |v_{i}\rangle$ and $|\langle w|v_{n}\rangle| = |a_{n}| = \sqrt{\epsilon}$.

Sufficient condition for the optimality of $\mathcal{C}\mathcal{G}$ algorithm

Let H_G be a Hamiltonian with eigenvalues

$$\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta \ge \ldots \ge \lambda_1 \ge 0$$

 $(\Delta > 0)$ such that $H_G |v_i\rangle = \lambda_i |v_i\rangle$.

Search Hamiltonian: $H_{\text{search}} = \ket{w} \langle w
vert + r H_G$.

Let $|w\rangle = \sum_{i} a_{i} |v_{i}\rangle$ and $|\langle w|v_{n}\rangle| = |a_{n}| = \sqrt{\epsilon}$.

Optimal
$$r = \sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}$$
 and Max. amplitude $\nu = \frac{\sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}}{\sqrt{\sum_{i \neq n} \frac{|a_i|^2}{(1 - \lambda_i)^2}}}$.

Sufficient condition for the optimality of CG algorithm Let H_G be a Hamiltonian with eigenvalues $\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta > \ldots > \lambda_1 > 0$ $(\Delta > 0)$ such that $H_G |v_i\rangle = \lambda_i |v_i\rangle$. Search Hamiltonian: $H_{\text{search}} = |w\rangle \langle w| + rH_{c}$. Let $|w\rangle = \sum_i a_i |v_i\rangle$ and $|\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon}$. Optimal $r = \sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}$ and Max. amplitude $\nu = \frac{\sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}}{\sqrt{\sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}}}$ Restriction: $\sqrt{\epsilon} \ll r\Delta/\nu$, Initial state: $|v_n\rangle$, Running time: $T = \Theta\left(\frac{1}{\sqrt{\epsilon}\nu}\right)$. **Final state**: $|f\rangle$ such that $|\langle w|f\rangle| \approx \nu$.

Sufficient condition for the optimality of CG algorithm Let H_G be a Hamiltonian with eigenvalues $\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta > \ldots > \lambda_1 > 0$ $(\Delta > 0)$ such that $H_G |v_i\rangle = \lambda_i |v_i\rangle$. Search Hamiltonian: $H_{\text{search}} = |w\rangle \langle w| + rH_{c}$. Let $|w\rangle = \sum_i a_i |v_i\rangle$ and $|\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon}$. Optimal $r = \sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}$ and Max. amplitude $\nu = \frac{\sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}}{\sqrt{\sum_{i \neq n} \frac{|a_i|^2}{1 - \lambda_i}}}$ Restriction: $\sqrt{\epsilon} \ll r\Delta/\nu$, Initial state: $|v_n\rangle$, Running time: $T = \Theta\left(\frac{1}{\sqrt{\epsilon}\nu}\right)$. **Final state**: $|f\rangle$ such that $|\langle w|f\rangle| \approx \nu$. Apply $\mathcal{O}(1/\nu)$ rounds of amplitude amplification: $T_{search} = \mathcal{O}\left(\frac{1}{\nu^2/c}\right)$.

$$egin{aligned} &|\langle w|f
angle &|pprox
u, \; |\langle w|v_n
angle &|=|a_n|=\sqrt{\epsilon} \ && T_{search}=\mathcal{O}\left(rac{1}{
u^2\sqrt{\epsilon}}
ight). \end{aligned}$$

$$egin{aligned} |\langle w|f
angle |&pprox
u, \; |\langle w|v_n
angle |&= |a_n| = \sqrt{\epsilon} \ & T_{search} = \mathcal{O}\left(rac{1}{
u^2\sqrt{\epsilon}}
ight). \end{aligned}$$

$$egin{aligned} |\langle w|f
angle |&pprox
u, \; |\langle w|v_n
angle |&= |a_n| = \sqrt{\epsilon} \ & T_{search} = \mathcal{O}\left(rac{1}{
u^2\sqrt{\epsilon}}
ight). \end{aligned}$$

• When $\Delta = \Theta(1), \ \nu = \Theta(1)$

- H_G is the adjacency matrix of a regular graph ($\epsilon = 1/n$) with $\Delta = \Theta(1)$ [C, Novo, Ambainis and Omar 2016].

$$egin{aligned} |\langle w|f
angle |&pprox
u, \; |\langle w|v_n
angle |&= |a_n| = \sqrt{\epsilon} \ & T_{search} = \mathcal{O}\left(rac{1}{
u^2\sqrt{\epsilon}}
ight). \end{aligned}$$

• When $\Delta = \Theta(1), \ \nu = \Theta(1)$

- H_G is the adjacency matrix of a regular graph ($\epsilon = 1/n$) with $\Delta = \Theta(1)$ [C, Novo, Ambainis and Omar 2016]. **Optimal**!

$$|\langle w|f
angle| pprox
u, |\langle w|v_n
angle| = |a_n| = \sqrt{\epsilon}$$

$$T_{search} = \mathcal{O}\left(\frac{1}{
u^2 \sqrt{\epsilon}}\right).$$

$$|\langle w|f
angle| pprox
u, |\langle w|v_n
angle| = |a_n| = \sqrt{\epsilon}$$

$$T_{search} = \mathcal{O}\left(\frac{1}{
u^2 \sqrt{\epsilon}}\right).$$

$$\begin{split} r &= \sum_{i \neq n} \frac{|\langle w | v_i \rangle|^2}{1 - \lambda_i}, \ |\langle w | f \rangle| \approx \nu, \ |\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon} \\ T_{search} &= \mathcal{O}\left(\frac{1}{\nu^2 \sqrt{\epsilon}}\right). \end{split}$$

Predicting r requires knowledge of solution unless P is also state-transitive.

$$r = \sum_{i \neq n} \frac{|\langle w | v_i \rangle|^2}{1 - \lambda_i}, \ |\langle w | f \rangle| \approx \nu, \ |\langle w | v_n
angle| = |a_n| = \sqrt{\epsilon}$$
 $T_{search} = \mathcal{O}\left(\frac{1}{\nu^2 \sqrt{\epsilon}}\right).$

- Predicting r requires knowledge of solution unless P is also state-transitive.
- The condition $\sqrt{\epsilon} \ll r\Delta/\nu$ needs to be satisfied.

$$\begin{split} r &= \sum_{i \neq n} \frac{|\langle w | v_i \rangle|^2}{1 - \lambda_i}, \ |\langle w | f \rangle| \approx \nu, \ |\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon} \\ T_{search} &= \mathcal{O}\left(\frac{1}{\nu^2 \sqrt{\epsilon}}\right). \end{split}$$

- Predicting r requires knowledge of solution unless P is also state-transitive.
- The condition $\sqrt{\epsilon} \ll r\Delta/\nu$ needs to be satisfied.
 - Does not hold for lattices of dimension less than four.

$$\begin{split} r &= \sum_{i \neq n} \frac{|\langle w | v_i \rangle|^2}{1 - \lambda_i}, \ |\langle w | f \rangle| \approx \nu, \ |\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon} \\ T_{search} &= \mathcal{O}\left(\frac{1}{\nu^2 \sqrt{\epsilon}}\right). \end{split}$$

- Predicting r requires knowledge of solution unless P is also state-transitive.
- The condition $\sqrt{\epsilon} \ll r\Delta/\nu$ needs to be satisfied.
 - Does not hold for lattices of dimension less than four.
- We show that $\Omega(\sqrt{\Delta}) < \nu < 1$.

- $HT(P, w) \leq \frac{1}{\Delta \epsilon}$.

$$\begin{split} r &= \sum_{i \neq n} \frac{|\langle w | v_i \rangle|^2}{1 - \lambda_i}, \ |\langle w | f \rangle| \approx \nu, \ |\langle w | v_n \rangle| = |a_n| = \sqrt{\epsilon} \\ T_{search} &= \mathcal{O}\left(\frac{1}{\nu^2 \sqrt{\epsilon}}\right). \end{split}$$

- Predicting r requires knowledge of solution unless P is also state-transitive.
- The condition $\sqrt{\epsilon} \ll r\Delta/\nu$ needs to be satisfied.
 - Does not hold for lattices of dimension less than four.
- We show that $\Omega(\sqrt{\Delta}) < \nu < 1$.
 - $HT(P,w) \leq \frac{1}{\Delta\epsilon}$. So when $\nu = \sqrt{\Delta} \implies$ Sub-optimal!
 - T_{search} is sub-optimal even for state-transitive P!

Example: Movement of rook on a rectangular chessboard

$\mathcal{C}\mathcal{G}$ algorithm on any ergodic, reversible Markov chain

Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.
Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.

One possibility: $|w, 0\rangle \langle w, 0| + rH_1$.

Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.

One possibility: $|w,0\rangle \langle w,0| + rH_1$. Does not work as critical value of r = 0.

Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.

One possibility: $|w,0\rangle \langle w,0| + rH_1$. Does not work as critical value of r = 0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs and Ge 2014]

 $H_{oracle} = - \ket{w, 0} \langle w, 0 \ket{H_1 - H_1} \ket{w, 0} \langle w, 0 |$.

Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.

One possibility: $\ket{w,0}ra{w,0}+rH_1$. Does not work as critical value of r=0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs and Ge 2014]

 $H_{oracle} = - \ket{w, 0} \langle w, 0 \ket{H_1 - H_1} \ket{w, 0} \langle w, 0 |$.

Example: If H_1 is the adjacency matrix of the graph, H_{oracle} removes the edges connected to the marked node.

Given any ergodic, reversible P, use the Somma-Ortiz Hamiltonian, i.e. $H_1 = i[V^{\dagger}SV, \Pi_0]$.

One possibility: $\ket{w,0}ra{w,0}+rH_1$. Does not work as critical value of r=0.

Alternatively: Use a different oracle Hamiltonian [Foulger et al. 2014, Childs and Ge 2014]

 $H_{oracle} = - \ket{w, 0} \langle w, 0 \ket{H_1 - H_1} \ket{w, 0} \langle w, 0 |$.

Example: If H_1 is the adjacency matrix of the graph, H_{oracle} removes the edges connected to the marked node.

Use the search Hamiltonian

$$H_{search} = -\ket{w,0}ra{w,0}H_1 - H_1\ket{w,0}ra{w,0} + H_1$$

to rotate from $|v_n, 0\rangle$ to the state

$$\ket{\widetilde{w}} = \frac{H_1 \ket{w}}{\ket{H_1 \ket{w}} \ket{1}}.$$

 $\blacktriangleright\,$ Amplitude amplification results in the state $|\widetilde{w}\rangle$ and so

 $T_{search} = \mathcal{O}\left(\mu^2/\sqrt{\epsilon}
ight).$

 \blacktriangleright Amplitude amplification results in the state $\ket{\widetilde{w}}$ and so

$$T_{search} = \mathcal{O}\left(\mu^2/\sqrt{\epsilon}
ight)$$
 .

Also $e^{-it'H_2} |\tilde{w}\rangle = |w, 0\rangle$, where $t' = \mathcal{O}(\mu)$. So $\mathcal{O}(\mu)$ additional queries to the oracle are needed to obtain $|w\rangle$.

- Amplitude amplification results in the state
$$\ket{\widetilde{w}}$$
 and so

$${\cal T}_{search} = {\cal O}\left(\mu^2/\sqrt{\epsilon}
ight).$$

- Amplitude amplification results in the state
$$\ket{\widetilde{w}}$$
 and so

$$T_{search} = \mathcal{O}\left(\mu^2/\sqrt{\epsilon}
ight).$$

Improvement over the \mathcal{CG} algorithm

• Whenever CG algorithm is optimal, so is CG'.

- Amplitude amplification results in the state
$$\ket{\widetilde{w}}$$
 and so

$$T_{search} = \mathcal{O}\left(\mu^2/\sqrt{\epsilon}
ight).$$

Improvement over the \mathcal{CG} algorithm

• Whenever CG algorithm is optimal, so is CG'.

For 2*d*-lattices,
$$CG'$$
 algorithm has a running time of $T_{search} = O(\sqrt{n} \log n)$.

- Amplitude amplification results in the state
$$\ket{\widetilde{w}}$$
 and so

$$T_{search} = \mathcal{O}\left(\mu^2/\sqrt{\epsilon}\right).$$

Improvement over the \mathcal{CG} algorithm

- Whenever CG algorithm is optimal, so is CG'.
- For 2d-lattices, CG' algorithm has a running time of T_{search} = O(√n log n). Our algorithm: O(√n log n).

Conclusions

- Spatial search algorithm by CTQW that runs in $\Theta(\sqrt{HT^+(P, M)})$ time on any ergodic, reversible Markov chain.
- Provided general conditions for the optimality of the spatial search algorithm by Childs and Goldstone
 - Applicable to only state-transitive Markov chains.
 - Sub-optimal.
- Improved the Childs and Goldstone algorithm to be applicable to any ergodic, reversible Markov chain.

Open questions:

Extended hitting time vs hitting time

Open questions:

Extended hitting time vs hitting time

Future work:

Open questions:

Extended hitting time vs hitting time

Future work:

Quantum algorithms for preparing the stationary state of an ergodic, reversible Markov chain.

Thank you for your attention!

For more details see:

S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph by continuous time quantum walk, arXiv:1807.05957 (2018).