A computationally universal phase of quantum matter

Robert Raussendorf, UBC

joint work with D.-S. Wang, D.T. Stephen, C. Okay, and H.P. Nautrup
The liquid phase of water
A quantum phase of spins in 2D

... which supports universal quantum computation

We consider:
- Phases of unique ground states of spin Hamiltonians, at $T = 0$,
- In the presence of symmetry,
- In spatial dimension 2 (a lattice of spin 1/2 particles)
A quantum phase of spins in 2D

... which supports universal quantum computation

We show:

- There exists a quantum phase of matter which is universal for quantum computation
- The computational power is *uniform* across the phase.
- Employ measurement-based quantum computation
It can be shown that this process finds a nontrivial divisor of n with probability at least $\frac{1}{2}$, independent of the factors of n. A brief sketch of the proof is as follows.

Let r_i be the order of $x \pmod{p_i^{a_i}}$. Consider the largest power of 2 among these powers of 2 agree: if they are all equal and larger than 1, then $x^{r/2}$ is a nontrivial divisor of n. By the Chinese remainder theorem, choosing an $x \pmod{n}$ at random, choosing an $x \pmod{p_i^{a_i}}$ at random, where $x \equiv x \pmod{p_i^{a_i}}$ for any choice of x, the probability of finding a nontrivial divisor is at least $\frac{1}{2}$. Thus, this process finds a nontrivial divisor of n with probability at least $\frac{1}{2}$.
A lesson from quantum error-correction

... With group and eigenstate, we’ve learned to fix Your quantum errors with our quantum tricks.*

“Good” entanglement often comes with a symmetry

[*] Dan Gottesman, *Quantum error correction sonnet*
Outline

1. Short history of “computational phases of quantum matter”

2. A computationally universal phase of matter in 2D
Part I:

* A short history of

“computational phases of quantum matter”
Measurement-based quantum computation

Unitary transformation

Projective measurement

deterministic, reversible

probabilistic, irreversible
Information written onto the resource state, processed and read out by one-qubit measurements only.

Universal computational resources exist: cluster state, AKLT state.

How rare are MBQC resource states?
1. MBQC resource states are rare

Fraction of useful states smaller than $\exp(-n^2)$

[n: number of qubits]

1. MBQC resource states are rare

\[\text{Fraction of useful states smaller than } \exp(-n^2) \]

\[n: \text{number of qubits} \]

What about systems with symmetry?

In the presence of symmetry

- Computational power is uniform across physical phases (known in 1D, conjectured beyond).
- Computationally useful quantum states are no longer rare.
Symmetry-protected topological order

Definition of SPT phases:

We consider ground states of Hamiltonians that are invariant under a symmetry group G.
Two points in parameter space lie in the same SPT phase iff they can be connected by a path of Hamiltonians such that

1. At every point on the path, the corresponding Hamiltonian is invariant under G.

2. Along the path the energy gap never closes.
2. Symmetry protects computation

we observe low-maintenance features of the ground-code MQC in that this computation is doable without an exact (classical) description of the resource ground state as well as without an initialization to a pure state. It turns out these features are deeply intertwined with the physics of the 1D Haldane phase (cf. Fig. 1), that is well characterized as the symmetry-protected topological order in a modern perspective [6, 7]. We believe our approach must bring the study of MQC, conventionally based on the analysis of the model entangled states (e.g., [1, 8, 9]), much closer to the condensed matter physics, which is aimed to describe characteristic physics based on the Hamiltonian.

3. Symmetry-protected wire in MBQC

- Computational wire persists throughout symmetry-protected phases in 1D.
- Imports group cohomology from the classification of SPT phases.

4. First quantum computational phase

- 1-qubit universal MBQC on a chain of spin-1 particles protected by an S_4 symmetry.

5. The role of symmetry breaking

Demonstrate how to measure in symmetry-breaking bases without incurring decoherence.

5. The role of symmetry breaking

- Small amount of symmetry breaking — unitary gates
- Large amount of symmetry breaking — measurement
Hints at the classification of MBQC schemes by symmetry.

Entanglement in the PEPS picture

- The more "bad" entanglement, the harder it is to accumulate rotation angle in the logical gates.
Inspection

The above waypoints 2 - 5 are about 1D systems.

1D is not sufficient for universal MBQC

Here is why:

- MBQC in spatial dimension D maps to the circuit model in dimension $D - 1$

\Rightarrow Require $D \geq 2$ for universality.
Are there computationally universal quantum phases in two dimensions?

This talk describes one.
Part II:

A computationally universal SPT phase in 2D
Description of the 2D phase & result

- The symmetries of the phase are

- The 2D cluster state is inside the phase

Result. For a spin-1/2 lattice on a torus with circumferences n and Nn, with n even, all ground states in the 2D cluster phase, except a possible set of measure zero, are universal resources for measurement-based quantum computation on $n/2$ logical qubits.
Consider MBQC resource states as tensor networks
Cluster-like states

... have PEPS tensors with the following symmetries

\[
\begin{align*}
X & \otimes I \\
X & \otimes I \\
Z & \otimes I \\
Z & \otimes I
\end{align*}
\]

The cluster states have the additional symmetry

\[
\begin{align*}
Z & \otimes I \\
X & \otimes I
\end{align*}
\]

(We do not require the latter symmetry for cluster-like states)
Splitting the problem into halves

Part A:

Lemma 1. All states in the 2D cluster phase are cluster-like.

Part B:

Lemma 2. All cluster-like states, except a set of measure zero, are universal for MBQC.
Part B: Symmetry Lego

Recall the symmetries of cluster-like states:

\[XZ = XZ = XZ = Z \]

\[XZ = XZ = XZ = Z \]
B: Cluster-like ⇒ universal

The clock cycle:

• Every byproduct operator is mapped back to itself after n columns ($n =$ circumference).

⇒ If a gate can be done once, it can be done many times.
B: Cluster-like \Rightarrow universal

- Map 2D system to effective 1D system
B: Cluster-like \Rightarrow universal

Universal gate set on $n/2$ qubits
Summary and outlook

- There exists a symmetry-protected phase in 2D with uniform universal computational power for MBQC.

- Symmetry Lego is fun—Try it!

Related: arXiv:1803:00095

Related: arXiv:1806.08780
Lemma 3. [*] Symmetric gapped ground states in the same SPT phase are connected by symmetric local quantum circuits of constant depth.

For any state $|\Phi\rangle$ in the phase,

$$|\Phi\rangle = U_k U_{k-1} \ldots U_1 |2D\text{ cluster}\rangle.$$

Look at an individual symmetry-respecting gate in the circuit,

$$U = \sum_j c_j T_j, \text{ with } T_j \in \mathcal{P}.$$

Which Pauli observables T_j can be admitted in the expansion?

A: In cluster phase \Rightarrow cluster-like

Which Paulis T_j can be admitted in the expansion $U = \sum_j c_j T_j$?
A: In cluster phase \Rightarrow cluster-like

Which Paulis T_j can be admitted in the expansion $U = \sum_j c_j T_j$?

Only X-type Pauli operators survive in the expansion.
A: In cluster phase \Rightarrow cluster-like

- Local tensors A_Φ describing $|\Phi\rangle$ are invariant under the cluster-like symmetries.
The parameter ν

There is a complex-valued parameter ν, $|\nu| \leq 1$, that needs to be known about the location of the resource state within the phase.

For infinitesimal angles $d\beta$, this results in a logical rotation [*]

$$e^{i d\beta |\nu| T},$$

for some Pauli operator T. (E.g., $T = Z_k, X_k, X_{k-1}Z_kX_{k+1}$).

We require that $\nu \neq 0$.