A computationally universal phase of quantum matter

Robert Raussendorf, UBC

joint work with D.-S. Wang, D.T. Stephen, C. Okay, and H.P. Nautrup

The liquid phase of water

A quantum phase of spins in 2D

... which supports universal quantum computation

We consider:

- Phases of unique ground states of spin Hamiltonians, at T=0,
- In the presence of symmetry,
- In spatial dimension 2 (a lattice of spin 1/2 particles)

A quantum phase of spins in 2D

... which supports universal quantum computation

We show:

- There exists a quantum phase of matter which is universal for quantum computation
- The computational power is <u>uniform</u> across the phase.
- Employ measurement-based quantum computation

Planet Physics

```
be shown that this proposed of n with probability at least actors of n. A brief sketch of the ctors of n. A brief sketch of the i^{i}. Let r_i be the order of x \pmod{p}. Consider the largest power of 2 of se powers of 2 agree: if they are all equal and larger than 1, then x^{r/2}. By the Chinese remainder theory 1, choosing an x \pmod{p} at random, where r in 1 in 1
```

Planet quantum computation

A lesson from quantum error-correction

... With group and eigenstate, we've learned to fix Your quantum errors with our quantum tricks.*

"Good" entanglement often comes with a symmetry

[*] Dan Gottesman, Quantum error correction sonnet

Outline

- 1. Short history of "computational phases of quantum matter"
- 2. A computationally universal phase of matter in 2D

Part I:

A short history of

"computational phases of quantum matter"

Measurement-based quantum computation

Unitary transformation

deterministic, reversible

Projective measurement

probabilistic, irreversible

Measurement-based quantum computation

measurement of Z (\odot), X (\uparrow), $\cos \alpha X + \sin \alpha Y$ (\nearrow)

- Information written onto the resource state, processed and read out by one-qubit measurements only.
- Universal computational resources exist: cluster state, AKLT state.

R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).

How rare are MBQC resource states?

1. MBQC resource states are rare

D. Gross, S.T. Flammia, J. Eisert, PRL 2009.

1. MBQC resource states are rare

D. Gross, S.T. Flammia, J. Eisert, PRL 2009.

What about systems with symmetry?

In the presence of symmetry

- Computational power is uniform across physical phases (known in 1D, conjectured beyond).
- Computationally useful quantum states are no longer rare.

Symmetry-protected topological order

Definition of SPT phases:

We consider ground states of Hamiltonians that are invariant under a symmetry group G.

Symmetry-protected topological order

Two points in parameter space lie in the same SPT phase iff they can be connected by a path of Hamiltonians such that

- 1. At every point on the path, the corresponding Hamiltonian is invariant under G.
- 2. Along the path the energy gap never closes.

2. Symmetry protects computation

we observe low-maintenance features of the ground-code MQC in that this computation is doable without an exact (classical) description of the resource ground state as well as without an initialization to a pure state. It

turns out these features are deeply intertwined with the physics of the 1D Haldane phase (cf. Fig. 1), that is well characterized as the symmetry-protected topological order in a modern perspective [6, 7]. We believe our approach must bring the study of MQC, conventionally based on the analysis of the model entangled states (e.g., [1, 8, 9]), much closer to the condensed matter physics, which is aimed to describe characteristic physics based on the Hamiltonian.

A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).

It

3. Symmetry-protected wire in MBQC

Else

Schwartz Doherty

Bartlett

- Computational wire persists throughout symmetry-protected phases in 1D.
- Imports group cohomology from the classification of SPT phases.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).

F. Pollmann et al., PRB B 81, 064439 (2010); N. Schuch, D. Perez-Garcia, and I. Cirac, PRB 84, 165139 (2011); X. Chen, Z.-C. Gu, and X.-G. Wen, PRB 83, 035107 (2011).

4. First quantum computational phase

- ullet 1-qubit universal MBQC on a chain of spin-1 particles protected by an S_4 symmetry.
- J. Miller and A. Miyake, Phys. Rev. Lett. 114, 120506 (2015).

5. The role of symmetry breaking

Measurement in ...

• Demonstrate how to measure in symmetry-braking bases without incurring decoherence.

RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).

5. The role of symmetry breaking

- Small amount of symmetry breaking unitary gates
- Large amount of symmetry breaking measurement

The SPT MBQC meat grinder

Hints at the classification of MBQC schemes by symmetry.

A. Prakash and T.-C. Wei, Phys. Rev. A (2016).

RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).

Entanglement in the PEPS picture

• The more "bad" entanglement, the harder it is to accumulate rotation angle in the logical gates.

Inspection

The above waypoints 2 - 5 are about 1D systems.

1D is not sufficient for universal MBQC

here is why:

- ullet MBQC in spatial dimension D maps to the circuit model in dimension D-1
- \Rightarrow Require $D \ge 2$ for universality.

Are there computationally universal quantum phases in two dimensions?

This talk describes one.

Part II:

A computationally universal SPT phase in 2D

Description of the 2D phase & result

The symmetries of the phase are

The 2D cluster state is inside the phase

Result. For a spin-1/2 lattice on a torus with circumferences n and Nn, with n even, all ground states in the 2D cluster phase, except a possible set of measure zero, are universal resources for measurement-based quantum computation on n/2 logical qubits.

Consider MBQC resource states as tensor networks

Cluster-like states

... have PEPS tensors with the following symmetries

The cluster states have the additional symmetry

(We do not require the latter symmetry for cluster-like states)

Splitting the problem into halves

Part A:

Lemma 1. All states in the 2D cluster phase are cluster-like.

Part B:

Lemma 2. All cluster-like states, except a set of measure zero, are universal for MBQC.

Part B: Symmetry Lego

Recall the symmetries of cluster-like states:

$$-=X$$

$$Z$$

$$Z$$

$$X=Z$$

$$X=Z$$

$$X=Z$$

B: Cluster-like ⇒ universal

The clock cycle:

- Every byproduct operator is mapped back to itself after n columns (n = circumference).
- \Rightarrow If a gate can be done once, it can be done many times.

B: Cluster-like ⇒ universal

Map 2D system to effective 1D system

B: Cluster-like ⇒ universal

Universal gate set on n/2 qubits

Summary and outlook

• There exists a symmetry-protected phase in 2D with uniform universal computational power for MBQC.

Symmetry Lego is fun—Try it!

arXiv:1803:00095

Related: arXiv:1806.08780

Lemma 3. [*] Symmetric gapped ground states in the same SPT phase are connected by symmetric local quantum circuits of constant depth.

For any state $|\Phi\rangle$ in the phase,

$$|\Phi\rangle = U_k U_{k-1} ... U_1 | \text{2D cluster} \rangle.$$

Look at an individual symmetry-respecting gate in the circuit,

$$U = \sum_{j} c_j T_j$$
, with $T_j \in \mathcal{P}$.

Which Pauli observables T_j can be admitted in the expansion?

[*] X. Chen, Z.C. Gu, and X.G. Wen, Phys. Rev. B 82, 155138 (2010).

Which Paulis T_j can be admitted in the expansion $U = \sum_j c_j T_j$?

Which Paulis T_j can be admitted in the expansion $U = \sum_j c_j T_j$?

Only X-type Pauli operators survive in the expansion.

• Local tensors A_{Φ} describing $|\Phi\rangle$ are invariant under the cluster-like symmetries.

The parameter ν

There is a complex-valued parameter ν , $|\nu| \leq 1$, that needs to be known about the location of the resource state within the phase.

Deviate from protected basis

For infinitesimal angles $d\beta$, this results in a logical rotation [*] $e^{id\beta|\nu|T},$

for some Pauli operator T. (E.g., $T = Z_k, X_k, X_{k-1}Z_kX_{k+1}$).

We require that $\nu \neq 0$.

[*] RR, D.-S. Wang, A. Prakash, T.-C. Wei, D.T. Stephen, PRA 96 (2017).