QUANTUM COMPUTATION FOR CHEMISTRY AND MATERIALS

Jarrod McClean

@JarrodMcClean

Research Scientist
Google - Quantum Artificial Intelligence Lab

SIMULATING CHEMISTRY

Understanding

Control

The Electronic Structure Problem

"The underlying physical laws necessary for the mathematical theory of a large part of physics and **the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

-Paul Dirac

$$\mathcal{H} |\psi\rangle = E |\psi\rangle$$

THE EXPONENTIAL PROBLEM

Electrons:

$$D = \left(\begin{array}{c} M \\ N_{\alpha} \end{array}\right) \left(\begin{array}{c} M \\ N_{\beta} \end{array}\right)$$

One mole 10^{23}

Particles in universe 10^{80}

Grand solutions from a grand device

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$
 Fertilizer

Humans: Haber Process

400°C & 200 atm

1-2% of ALL energy on earth, used on Haber process

Classically – No clear path to accurate solution Quantum Mechanically – 150-200 logical qubits for solution

CLASSICAL PRE-CALCULATIONS

Problem Input: "Second-Quantized Electronic Hamiltonian"

$$\mathcal{H}_e(R) = h_{pq}(R)\hat{a}_p^{\dagger}\hat{a}_q + h_{pqrs}(R)\hat{a}_p^{\dagger}\hat{a}_q^{\dagger}\hat{a}_r\hat{a}_s$$

Atom Centered Basis

Hartree-Fock (Mean-Field)

Molecular Orbitals

QUANTUM ADVANTAGE IN CHEMISTRY

Classical: Exponential cost

Quantum: Modest polynomial cost

Challenge: Algorithm can require > millions of coherent gates

A Co-design Perspective

Previously: Given a task, design quantum circuit (or computer) to perform it.

Problem: General or optimal solution can require millions of gates.

Alternative: Given a task and the current architecture, find the best solution possible.

Peruzzo*, McClean*, Shadbolt, Yung, Zhou, Love, Aspuru-Guzik, O'Brien.

Nature Communications, 5 (4213):1–7, 2014.

† Equal Contribution by authors

Easy Task For A Quantum Computer

$$\langle \sigma_i^z \rangle$$
 $\langle \sigma_1^z \sigma_2^z \dots \sigma_n^z \rangle$
 \downarrow

- •Efficient to perform on any prepared quantum state
- •In general, it may be very hard to calculate this expectation value for a classical representation, containing an exponential number of configurations

$$|\Psi\rangle = \sum_{i_1 i_2 \dots i_N} c^{i_1 i_2 \dots i_N} |i_1 i_2 \dots i_N\rangle$$

Back to Basics

Variational Formulation:

Minimize $\langle \Psi | H | \Psi \rangle$

Decompose as:

$$\mathcal{H} = h_{\alpha}^{i} \sigma_{\alpha}^{i} + h_{\alpha\beta}^{ij} \sigma_{\alpha}^{i} \sigma_{\beta}^{j} + h_{\alpha\beta\gamma}^{ijk} \sigma_{\alpha}^{i} \sigma_{\beta}^{j} \sigma_{\gamma}^{k} + \dots$$

By

Linearity:

$$\langle \psi | \mathcal{H} | \psi \rangle \equiv \langle \mathcal{H} \rangle = \mathcal{H} = h_{\alpha}^{i} \langle \sigma_{\alpha}^{i} \rangle + h_{\alpha\beta}^{ij} \langle \sigma_{\alpha}^{i} \sigma_{\beta}^{j} \rangle + h_{\alpha\beta\gamma}^{ijk} \langle \sigma_{\alpha}^{i} \sigma_{\beta}^{j} \sigma_{\gamma}^{k} \rangle + \dots$$

Easy for a Quantum Computer:

Easy for a Classical Computer:

$$\langle \sigma_{\alpha}^{i} \sigma_{\beta}^{j} \sigma_{\gamma}^{k} ... \rangle$$

$$+, \times \to \langle H \rangle$$

Suggests Hybrid Scheme:

- •Parameterize Quantum State with Classical Experimental Parameters
- •Compute Averages using Quantum Computer
- •Update State Using Classical Minimization Algorithm

Variational Quantum Eigensolver

Peruzzo*, McClean*, Shadbolt, Yung, Zhou, Love, Aspuru-Guzik, O'Brien. Nature Communications, 5 (4213):1–7, 2014.

† Equal Contribution by authors

McClean, Romero, Babbush, Aspuru-Guzik *New Journal of Physics* **18** 023023 (2016)

SCALABLE SIMULATION OF MOLECULAR ENERGIES IN SUPERCONDUCTING QUBITS

P.J.J. O'Malley, R. Babbush,..., J.R. McClean et al. "Scalable Simulation of Molecular Energies" Physical Review X 6 (3), 031007 (2016)

VARIATIONAL ERROR SUPPRESSION

VARIATIONAL ERROR SUPPRESSION

QUANTUM SUBSPACE EXPANSION (QSE)

Expand to a Quantum Subspace

Quantum State on Quantum Device

Extra Quantum Measurements

Classical Generalized Eigenvalue Problem

$$HC = SCE$$

Excited State Energy and Properties

QUANTUM SUBSPACE EXPANSION (QSE)

General Idea: Learn action of H in a subspace

Act: $HO_i|\Psi(\theta_1,\theta_2,...)\rangle$

Probe: $\langle \Psi(\theta_1, \theta_2, ...) | O_j^{\dagger}$

Local Metric S

$$H_{ij} = \langle \Psi(\theta_1, \theta_2, ...) | O_j^{\dagger} H O_i | \Psi(\theta_1, \theta_2, ...) \rangle$$
$$HC = SCE$$

Experimental H_2 Spectrum

- Linear response (+), measured operators: IZ, ZI, IX, XI, XY, YX
- Spurious state disappears, good reconstruction of excited states

"Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm" Colless, Ramasesh, Dahlen, Blok, Kimchi-Schwartz, **McClean**, Carter, de Jong, Siddiqi *Phys. Rev. X* 8, 011021 (2018)

Experimental H_2 Spectrum

"Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm" Colless, Ramasesh, Dahlen, Blok, Kimchi-Schwartz, **McClean**, Carter, de Jong, Siddiqi *Phys. Rev. X* 8, 011021 (2018)

SIMPLE 1 QUBIT EXAMPLE

$$H = \begin{pmatrix} -0.24 & 1.92 \\ 1.92 & -0.99 \end{pmatrix} \rho_{pure} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \rho_{mix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$H_{ij} = \text{Tr}\left[\rho O_i^{\dagger} H O_j\right]$$
 $S_{ij} = \text{Tr}\left[\rho O_i^{\dagger} O_j\right]$

Set 0 $O_i \in \{I\}$

Set 1 $O_i \in \{I, X\}$

Set 2 $O_i \in \{I, X, Y, Z\}$

OPERATORS TO MITIGATE INCOHERENT ERRORS

Pure States:

$$\tilde{H}_{ij} = \langle \Psi | O_i^{\dagger} H O_j | \Psi \rangle
\tilde{S}_{ij} = \langle \Psi | O_i^{\dagger} O_j | \Psi \rangle$$

$$\underline{HC = SCE}$$

$$\sum_i c_i O_i | \Psi \rangle$$

Mixed States:

$$H_{ij} = \operatorname{Tr} \left[O_i^{\dagger} H O_j \rho \right] = \langle \langle O_i | H \otimes \rho^* | O_j \rangle \rangle$$

$$S_{ij} = \operatorname{Tr} \left[O_i^{\dagger} O_j \rho \right] = \langle \langle O_i | I \otimes \rho^* | O_j \rangle \rangle$$

$$\tilde{O} = \sum_i c_i O_i$$

Fully mitigates errors iff

$$\tilde{O}\rho\tilde{O}^{\dagger} = \rho_0$$

$$\tilde{O} = \sum_{i} \alpha_i |\Psi_0\rangle \langle \Psi_i| + \sum_{ij} \beta_{ij} |\Psi_i\rangle \langle \Psi_j^{\perp}|$$

Network / Ansatz Parameterization

$$\min_{\vec{\theta}} \langle \Psi(\vec{\theta}) | H | \Psi(\vec{\theta}) \rangle$$

Chemistry
Nuclear Physics
Optimization (QAOA)
Machine learning
Algorithm learning

. .

CLASSICAL DEEP NETWORKS

Prior to 2006, networks with more than ~1-2 hidden layers unsuccessful

Partial Remedies:

- 1. Longer training
- 2. ReLU activation functions
- 3. Batch normalization
- 4. Initialization strategies
- 5. Skip networks (ResNets)
- 6. Unitary feed forward networks

Estimation Complexity Classical Quantum $O(\log(1/\epsilon))$ $O(1/\epsilon^{\alpha})$

"Understanding the difficulty of training deep feedforward neural networks", Xavier Glorot and Yoshua Bengio (2010)

"On the importance of initialization and momentum in deep learning", Ilya Sutskever, James Martens, George Dahl and Geoffrey Hinton (2013).

RANDOM PARAMETERIZED QUANTUM CIRCUITS (RPQC)

RPQC Definition:

 U_{-} and U_{+} are statistically independent

Either U_{-} or U_{+} is a 2-design (matches Haar measure up to second moment)

Claim: The probability of measuring a gradient component with "significant magnitude" is exponentially small in the number of qubits

Intuition From Levy's Lemma

Define:

$$S_{\epsilon} = \{ x \in S^{(2n-1)} | d(x_j, 0) \le \epsilon/2 \}$$
 $\mu(S^{(2n-1)}) = 1$

f "smooth" (Lipschitz continuous w/ constant) η

Then:

$$\mu(S_{\epsilon}) = 1 - \exp(-cn\epsilon^{2})$$

$$\Pr\{|f(x) - \langle f \rangle| \ge \epsilon\} \le \exp\left(\frac{-n\epsilon^{2}}{9\pi^{3}\eta^{2}}\right)$$

Outline of Analytic Results

$$p(U) = \int dU_{+}p(U_{+}) \int dU_{-}p(U_{-})\delta(U_{+}U_{-} - U).$$

$$\langle \partial_k E \rangle = i \int dU_- p(U_-) \text{Tr} \left\{ \rho_- \int dU_+ p(U_+) \left[V, U_+^{\dagger} H U_+ \right] \right\}$$

Average: Either U_- or U_+ are 1-designs

 $\langle \partial_k E \rangle = 0$

Variance:

$$\operatorname{Var}\left[\partial_k E\right] = \langle (\partial_k E)^2 \rangle =$$

Case 1: U_{-} is a 2-design but not U_{+}

Case 2: U_+ is a 2-design but not U_-

$$-\frac{\operatorname{Tr}(\rho^2)}{2^{2n}}\operatorname{Tr}\langle\left[V,u^{\dagger}Hu\right]^2\rangle_{U_+}$$

$$-\frac{\operatorname{Tr}(H^2)}{2^{2n}}\operatorname{Tr}\langle\left[V,u\rho u^{\dagger}\right]^2\rangle_{U_{-}}.$$

Case 3: Both are 2-designs

$$2\operatorname{Tr}\left(H^{2}\right)\operatorname{Tr}\left(\rho^{2}\right)\left(\frac{\operatorname{Tr}\left(V^{2}\right)}{2^{3n}}-\frac{\operatorname{Tr}\left(V\right)^{2}}{2^{4n}}\right)$$

A RARE PICTURE OF THE GRADIENT LANDSCAPE

Gradients vanishing in practice

$$H = -Z_1Z_2$$

$$R_{P_{i,j}}(\theta_{i,j}) = \exp(-i\theta_{i,j}P_{i,j})$$
$$P_{i,j} \in \{X, Y, Z\}$$

Convergence with Depth

BLACK HOLES IN YOUR CIRCUITS?

McClean, Boixo, Smelyanskiy, Babbush, Neven "Barren Plateaus in Quantum Neural Network Training Landscapes" *Nature Communications* Vol **9**, 4812 (2018)

Domain Knowledge Matters

Year	Reference	Representation	Algorithm	Time Step Depth	Coherent Repetitions	Total Depth
2005	Aspuru-Guzik et al. [1]	JW Gaussians	Trotter	$\mathcal{O}(\operatorname{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2010	Whitfield et al. [2]	JW Gaussians	Trotter	$\mathcal{O}(N^5)$	$\mathcal{O}(\operatorname{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2012	Seeley et al. [3]	BK Gaussians	Trotter	$\widetilde{\mathcal{O}}(N^4)$	$\mathcal{O}(\operatorname{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2013	Perruzzo et al. [4]	JW Gaussians	UCC	Variational	Variational	$\mathcal{O}(\operatorname{poly}(N))$
2013	Toloui et al. [5]	CI Gaussians	Trotter	$\mathcal{O}(\eta^2 N^2)$	$\mathcal{O}(\operatorname{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2013	Wecker et al. [6]	JW Gaussians	Trotter	$\mathcal{O}(N^5)$	$\mathcal{O}(N^6)$	$\mathcal{O}(N^{11})$
2014	Hastings et al. [7]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\mathcal{O}(N^4)$	$\mathcal{O}(N^8)$
2014	Poulin et al. [8]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\sim N^2$	$\sim N^6$
2014	McClean et al. [9]	JW Gaussians	Trotter	$\sim N^2$	$\mathcal{O}(N^4)$	$\sim N^6$
2014	Babbush et al. [10]	JW Gaussians	Trotter	$\mathcal{O}(N^4)$	$\sim N$	$\sim N^5$
2015	Babbush et al. [11]	JW Gaussians	Taylor	$\widetilde{\mathcal{O}}(N)$	$\widetilde{\mathcal{O}}(N^4)$	$\widetilde{\mathcal{O}}(N^5)$
2015	Babbush et al. [12]	CI Gaussians	Taylor	$\widetilde{\mathcal{O}}(N)$	$\widetilde{\mathcal{O}}(\eta^2 N^2)$	$\widetilde{\mathcal{O}}(\eta^2 N^3)$
2015	Wecker et al. [13]	JW Gaussians	UCC	Variational	Variational	$\mathcal{O}(N^4)$
2016	McClean et al. [14]	BK Gaussians	UCC	Variational	Variational	$\mathcal{O}(\eta^2 N^2)$
2017	Babbush et al. [15]	JW Plane Waves	Trotter	$\mathcal{O}(N)$	$\mathcal{O}(\eta^{1.83} N^{0.67})$	$\mathcal{O}(\eta^{1.83}N^{1.67})$
2017	Babbush et al. [15]	JW Plane Waves	Taylor	$\widetilde{\mathcal{O}}(1)$	$\widetilde{\mathcal{O}}(N^{2.67})$	$\widetilde{\mathcal{O}}(N^{2.67})$
2017	Babbush et al. [15]	JW Plane Waves	TASP	Variational	Variational	$\mathcal{O}(N)$

Typical Chemistry Problem Workflow

$$H = \sum_{ij} h_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} h_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$

$$H = \sum_{i\alpha} g^{\alpha}_{i} \sigma^{i}_{\alpha} + \sum_{i\alpha j\beta} g^{\alpha\beta}_{ij} \sigma^{i}_{\alpha} \sigma^{j}_{\beta} + \dots$$

Molecule Specification:

- XYZ Coordinates
- Spin & Number of electrons
- Discretization (Basis set / grid)

Integral Generation

- Depends on basis set, often uses external software Starter Calculation (e.g. Hartree-Fock)
 - Integral basis change
 - Initial state preparation

Map to Qubits

- Jordan-Wigner
- Bravyi-Kitaev
- ...

Select Problem & Algorithm

- Energies, properties etc.
- Quantum Phase Estimation
- Variational Quantum Eigensolver (& Ansatz)

Map to hardware

OpenFermion (www.OpenFermion.org)

An open source quantum simulation package for quantum computers

Typical Chemistry Problem Workflow

$$H = \sum_{ij} h_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} h_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$

$$H = \sum_{i\alpha} g_i^{\alpha} \sigma_{\alpha}^i + \sum_{i\alpha j\beta} g_{ij}^{\alpha\beta} \sigma_{\alpha}^i \sigma_{\beta}^j + \dots$$


```
h2_hamiltonian = (run_psi4(h2_molecule).
    get_molecular_hamiltonian())
```

```
h2_qubit = (jordan_wigner(
    get_fermion_operator(h2_hamiltonian)))
```

DEVELOPMENT PHILOSOPHY

OpenFermion

OpenFermion is an open source effort for compiling and analyzing quantum algorithms to simulate fermionic systems, including quantum chemistry. Among other functionalities, the current version features data structures and tools for obtaining and manipulating representations of fermionic and qubit Hamiltonians.

Apache 2.0 open-source license

All contributors added to website and release papers

Summary

Learn from history, watch out for vanishing gradients!

ACKNOWLEDGEMENTS

Google

