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From Bits to Qubits

Goal is to solve an inherently classical problem
with a quantum algorithm

Classical variables will Quantum algorithm
be binary (bits) promotes bits to qubits
r =10, 1} 9) = al0) + b[1)
A natural binary Pick a basis for the
valued system is the qubits to associate
ISINg spin classical bit values to
=0 =1

Computational basis:
eigenstates of the
Pauli-Z operator ¢*

0°[0) = 410 o” 1) = —[1)



Our Objective Today

Find the ground state of Ising Hamiltonians
HIsing — Z hZO',LZ -+ Z JijO',L-ZO';
? (2,5)

Or any Hamiltonian defined entirely in terms of o*
(diagonal in the computational basis)

Local fields h; and Ising couplings J;; specity the problem

Spins live on the
vertices of the
connectivity

graph

Weighted edges
of the graph
correspond to
Ising Interaction

Total of 2% configurations for an N spin problem
Computationally prohibitive to search for the ground state



Ising Is Sufficient

Algorithms to solve the Ising model is an
important line of research

Physics Computer science

The Ising problem on
non-planar graphs
belongs to the
complexity class
NP-hard()

Classic system for
studying
magnetization,
phase transitions,
glassiness

A very good algorithm for solving the
Ising model is likely to be a good
algorithm for solving problems in NP

(1) F. Barahona, J. Phys. A: Math. Gen. 15 3241 (1982)



Why Solving NP Problems is Important

NP problems are ubiquitous with with range of applications

NP Problem Application
Traveling salesman Logistics, vehicle routing
Minimum Steiner tree Circuit layout, network design
Graph coloring Scheduling, register allocation
MAX-CLIQUE Social networks, bioinformatics
QUBO Machine learning, software V&V
0-1 Integer Linear Programming Natural language processing
Sub-graph isomorphism Chem-informatics, drug discovery
Job shop scheduling Manufacturing
MAX-25AT Artificial intelligence

Optimum solution to
optimization problem

Finding ground state to
Ising problem

>

These problems are typically very hard to solve,
requiring a time that grows exponentially with the problem size



Can Quantum Computing Help?

Can gquantum computing help solve
a class of Ising problems more efficiently?

Quantum annealing (QA)(1.2)
IS an adiabatic-paradigm quantum algorithm
to solve for the ground state of Ising problems

Good news Bad news

Provable speedups for » Hamiltonians involve
oracular problems(3-9) N-body operators

No provable or
No proof that a speedup demonstrated speedups for
IS Impossible Ising-like Hamiltonians with

bounded locality

_ - (3) J. Roland and N. Cerf, Phys. Rev. A 65, 042308 (2002)
(1) T Kadowak|, and H. Nishimori , PhyS Rev. E 58 (5), 5355 (1998) (4) | Hen’ Europhysics Letters 105 (5)’ 50005 (20‘]4)

(2) E. Farhi,et al., Science 292 (5516), 472 (2001) (5) R. D. Somma, et al. , Phys. Rev. Lett. 109 (5), 050501 (2012)



1. How should QA work? Closed-system QA

2. Why has QA not worked? Open-system QA

and
the D-Wave processors

3. How do we address these
challenges? Beyond standard QA




What is Standard Quantum Annealing”

A continuous Interpolation
between two Hamiltonians

t
o H(t) = (1—— ) Hy+ —H, H;
Easily prepared 0, }qjj £0 Uy Ground state
ground state B Y encodes solution
— ZO’ZZ L€ [O7tf] Hl — HISing

Procedure for Quantum Annealing (QA):

(1) (2) (3)

Prepare system in Evolve according Measure the state
the ground state to H(t)for a in the o” basis
of H(t = 0) time

Success if measurement outcome is
the ground state of H;



A Guarantee for QA to Find the Solution

Adiabatic theorem
If the interpolation is sufficiently slow
then with high probability the final state of the system is the
ground state of H;
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The efficiency of the algorithm is then determined by
how ¢ must scale with system size N

(1) S. Jansen,et al., J. Math. Phys. 48 (10), 102111 (2007)



An Alternative Picture

Ground state of Hj » H, =Transverse field
Transverse
fleld
Ising model
Ground state of H; > H,=1Ising

Phase diagram of a transverse field Ising model

Ordered Disordered
phase Amin phase
0 Jc

Transverse field strength g

Quantum annealing tries to follow the ground state
from the disordered phase to the ordered phase



A Classical Analogue

Quantum annealing (QA)@) Simulated annealing (SA)()

Ground state of H High temperature state

Quantum/classical

Quench thermal
ﬁ fluctuations

analogues

Quench guantum
fluctuations

Ground state of H; Low temperature state

SA
Disordered

phase

Ordered
phase

g

(1) S. Kirkpatrick et al., Science 220, 671-680 (1983) (2) T. Kadowaki, and H. Nishimori, Phys. Rev. E 58 (5), 5355 (1998)



Simulated Annealing

> T

High temperature state

Quench thermal
fluctuations

T=p3"
Low temperature state

Configurations

Thermally hopping over a barrier at low temperatures
IS exponentially suppressed in the barrier height AE



Why Might QA Have an Advantage over SA

Semiclassical potential evolves with time
State tries to stay in its local minimum

Vi

Small energy gaps are associated with double-well
energy barriers through which the system must tunnel

v
A

The semiclassical potential may have a double-well, even if
the classical potential does not(1)

Efficiency to traverse the barrier is related to how
the barrier width and height scale with problem size

(1) S. Muthukrishnan, TA, and D. A. Lidar, Phys. Rev. X 6, 031010, (2016).



llustrative Examples

Hamming Weight Problems

A classical Hamiltonian H; where the energy of a classical state
only depends on the Hamming weight of that state
(equivalent to counting the number of down-pointing spins)

Classical state Hamming weight Energy
/\/\/\> O EO
\(/\/\>
/\\//\> 1 E1
/\/\\,>
L) 3 E;

QA Hamiltonian with a transverse field
IS Invariant under qubit permutations



Prototypical Hamming Weight Problem

The “spike” problem(1)
(shown here for N = 16)

> 15}
Barrier width @ | It Barrier height
constant with L 10 grows with the
problemsize N 8 | problem size N

‘» 5L (2_).

W I

C_U i

o .

T N5 10 15
Hamming weight

(single-spin) SA requires exponential time
In the system size to find the ground state

(1) E. Farhi, J. Goldstone, and S. Gutmann, arXiv:quant- ph/0201031 (2002).



The “Spike” Problem

Classical landscape Quantum semi-classical
(landscape at s = 1) landscape at s = 0.359
15:_ ! .| 3.10¢
| 3.05/
101 o 1 3.00¢
| . 2.95|
5 .| 2.90
| 2.85|
U S A A i 2.80!

Double-well barrier height grows sub-linearly with N
and width shrinks with increasing N

Quantum minimum gap scales polynomially with N

Exponential speedup over SAM

(1) E. Farhi, J. Goldstone, and S. Gutmann, arXiv:quant- ph/0201031 (2002).



Recap: Closed System Quantum Annealing

Quantum annealing

Prepare system In Adiabatic evolution Ground state of

the ground state >  Hy encodes the
of H, guarantees success solution

Efficiency controlled by the scaling of the minimum gap

The changing energy landscape can be very different
from the classical energy landscape

v

Can lead to quantum advantage over classical
algorithms like simulated (thermal) annealing



So What’s the Problem

Hamming weight Hamiltonians examples require
N-body operators.

The intuition gained has not yet
led to the demonstration of a speedup
for physically realizable problems

Why not?

® No symmetries to help facilitate the analysis
® Simulations are not possible at large sizes
® \ery good classical algorithms

Only way to test for speedup
may be to build a device and see

()



The Realistic Setting

A physical device naturally couples the system
to additional degrees of freedom (the “bath”)

Decoherence

M Open system

gquantum annealing

\

Unitary and dissipative dynamics

(non-unitary) decay of phase
population relationship between
transter specific states

Contlict between running adiabatically (long time)
and minimizing the interaction time with the bath



Weakly Coupled Open Quantum Systems

The most innocuous model of decoherence for QA (1)
weak coupling and Markovian

Key feature Affect on QA
pushes system decreases with increasing
towards the thermal problem size, so adiabatic
state(®) theorem requires us to use
* longer annealing times
lim p(t) — pa(t)® More time spent interacting with
bymres the environment means system
(1) = exp (—BH(t)) gets closer and closer to the
PG Tr lexp (—BH(t))] thermal state
(1) TA and D. A. Lidar, Phys. Rev. A 91, 062320 (2015) (3) L. C. Venuti, TA, D. A. Lidar, and P. Zanardi Phys. Rev. A 93,

(2) TA, S. Boixo, D. A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012) 032118 (2016)



Thermal Quantum Annealer

For a thermalizing quantum annealer

Success depends on how much weight
the thermal state has on the ground state

N = 1152 B =1.47
. . : I - I (Hising) — Eas |
Distribution 03! 5 0 Hising)
20 |
becomes 0.05 |
more = 15
. . = 0.2
gaussian-like, § (Hising) -
with a mean 5 0.15 [ 5 70
that moves 0.1
away f.ro.m the ;5
origin . | | |
0 50 10@ 15000  2@000 3000 4000

Residual energy N

At a fixed temperature, it becomes exponentially unlikely to
sample the ground state with increasing problem size()

(1) TA, V. Martin-Mayor, |. Hen, Phys. Rev. Lett. 119, 110502 (2017).



Analog Devices leads to Analog Errors

Analog control of the Hamiltonian leads to
misspecitication of the tinal Hamiltonian

Desired
HIsing = Z hfLO’f + Z JijO','L-ZO';
2 (,7)

Implemented

Higng = > (hi +0hi)of + > (Jij + 0Jij)070;

¢ (%,9)

It the perturbation is sufficiently large,
the ground state Hy,, is different from the
ground state of Higing

Even a perfect adiabatic evolution will result in
the wrong answer!



Implementation Errors

How does a fixed precision affect the
success of QA with increasing
problem size?

Detine ps to be the probability that the
ground state of Hp,, matches one of the
ground states of Hising

Pick a noise model

5hi, 5JZJ - N(O, 0'2)

Use instances at different sizes N with
known ground states, and generate many
noisy realizations of the same instances



Scaling with Implementation Errors

Instances defined with a Chimera connectivity
with range 3 and only two ground states(")

8] O 3 I T T T | ] . .
: 1071 "y . For a fixed noise
g | %% | strength o, the
= : | probability of
) 10_1 3 % :
< o . the ground state
- ] N=512 : '
E i NCem by | not changing
S, 1 N=800 % _ decreases
10| B =8 7 . exponentiall
- 3 N =1152 1 : . y
g N=135 ﬁ, . with problem
o, I N =1548 .
SR . . . . . size N

0 5 10 15 20 25 30

o AN

Different problem classes exhibit
different dependence on o

(1) TA, V. Martin-Mayor, |. Hen, arXiv:1806.03744.



Recap: Open System Quantum Annealing

Even in the optimistic setting of decoherence

Temperature must be scaled down with
increasing problem size for thermalizing
guantum annealer

T(worst case) N 1
S Na
Implementation errors must be
scaled down with increasing problem size,

even for an otherwise perfect device

(worst case) N i
O'S N
Scalable quantum annealing has no hope without
fault tolerant guantum error correction,

which remains on open theoretical question
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Commercially Available Quantum Annealers

D-Wave Systems has been selling (purported)
guantum annealing processors since 2011

Welcome to the Future

Quantum Computing for the Real World Today

- D-Wave 1 “Rainier”

- D-Wave 2 “Vesuvius”
. D-Wave 2X “Washington”
- D-Wave 2000Q

128 qubits

512 qubits

1152 C

2048 ©

ubits

ubits

20m
1/m

K
<

13MmK

12-15mK



How the D-Wave Processor Works

End user programs the Ising local fields {h; }
and Ising couplers {J;; }

HIsing — th()'f + <§:> Jijgfo-;
() 1,9

Ising connectivity limited to the physical qubit
connectivity of the device

Square grid of Unit cell
8 qubit unit cells T
\\ 4
\\ /R
-
'




Benchmarking D-Wave Processors

Several benchmarking studies over several generations
of D-Wave devices defined on L x L Chimera graphs

ranging from 128 to 2048 qubits

DW1, L = 4 DW2, L = 8 DW2X, L = 12 DW2000Q, L = 16
(128 qubits) (512 qubits) (1152 qubits) (2048 gqubits)

Boixo et al. (2014) Rennow et al. (2014) King et al. (2015) King et al. (2017)
Hen et al. (2015) Denchev et al. (2016) TA et al. (2018)
King et al. (2015) Mandra et al. (2018)

Benchmarking standards set in Rgnnow et al. (2014)

Computational cost measured in terms of time-to-solution (TTS),
required time to run algorithm to find the ground state at least once
with a 0.99 probabillity

At each problem size, algorithm parameters are optimized to
minimize the TTS (averaged over instances), (TTS)™



Has it demonstrated a speedup?

No demonstration of a scaling advantage over
classical algorithms(1)

DW2KQ: D-Wave
2000Q) device

SA: Simulated
Annealing

PIQMC: Path-
Integral Monte
Carlo Annealing
(aka Simulated
quantum
annealing)

PT-ICM: Parallel
tempering with
Isoenergetic
cluster moves

l ~ exp(0.352V/N)
§ ~ exp(0.110VN)

~ exp(0.268V'N)

1095
7§ e
"y : e
) GG SRS P-—===C
* uﬁE:::::jF:::::# ______ ==
m ;
2 ]
R - § DW2KQ|
T $ SA
F PIMC
Ll § PT-ICM
10 | | |
1152 1352 1568 1800

(1) TA and D. A. Lidar, Phys. Rev. X 8, 031016 (2018).

VN

V2048

Classical algorithms can be very efficient
at solving this class of Ising problems on
the D-Wave connectivity graph(?)



D-Wave § %223;21 /i,//’%
operating - |
temperature T 3 -7
correspondsto -+
5=051. & | R
= 10, -7
D-Wave e ,,,, - 1
scaling is T
exp(0.268VN) , , ,
V1152 /1352 /1568 /1800
v N

Temperature slow down?

The device temperature is too high

Consider the scaling of path-integral Monte Carlo
annealing at two different temperatures using the D-

10%

Wave annealing schedule

~ exp(0.254VN)

N exp(0.129v N)

V2048

Pertormance improves dramatically at lower

temperatures



Prefactor versus Scaling

| have so far focused on the scaling with
problem size

Even if we don't get a scaling advantage, we may
get a wall-clock time advantage
(prefactor advantage)(1.2)

Requires accounting of all time costs
(initial state preparation, measurement time, etc.)

Still no clear evidence of this advantage yet
on current devices

Other possible metrics:
Power consumption per quality of solution(3)

(1) S. V. Isakov et al. PRL 117, 180402 (2016).
(2) Z. Jiang et al. PRA 95, 012322- (2017).
(3) S. Mandra and H. Katzgraber, Quant. Sci. Technol. 3, 04LT01 (2018)



‘Standard’ Quantum Annealing

Discussion so far has been about using
transverse field Hamiltonian to drive the anneal

H(s) = (1 — s) ( 3 a) + 5 Higing

1

To date,
no theoretical or experimental evidence for a
quantum speedup for Ising-type Hamiltonians

Nothing stops us from going beyond
the standard setup



Beyond Standard QA

Introduce intermediate ‘catalyst’
Hamiltonian H. to help the anneal()

H(S) — (1 — S)H() S(l — S)Hc SHISing

(,4)
o= —1 e
Ferromagnetic Anti-ferromagnetic
transverse interaction transverse interaction
Hamiltonian H (s) amiltonian H (s) may
remains stoquastic@) be non-stoquastict?)
In most cases, a« = —1 is the better choice,

and often a« = 1 Is worse than o = 0(1.3)

(1) E. Crosson, et al., arXiv preprint arXiv:1401.7320 .
(2) S. Bravyi, et al., Quant. Inf. Comp. 8, 0361 (2008).
(3) L. Hormozi, et al., Phys. Rev. B 95, 184416 (2017).



Non-generic Counterexample

Infinite-range ferromagnetic p-spin model(!)

H(s,A\) =—(1—s) E ol + s(1 —
o= —]1
1072 w
107 ¢
E ,
- & »
10—8-
107 > oa=—1
5 10 15 20 25
n

Exponentially closing gap

(1) Y Seki and H Nishimori, Phys. Rev. E 85, 051112 (2012).
(2) TA, arXiv:1811.09980.

- (Z af;) 2 — sAn' 77 (Z o7

1

a =1

/
min

0 50 100 150
n

Polynomially closing gap



Incremental steps vs One step

Ground state changes incrementally
along the anneal for a = 1, as opposed
to suddenly for a = —1

- s=1.000 x  s=1000 | ~ 5=0800
| A= Q.500 1 A= Q.900 1 A= Q.lOO
5 0 5 5 0 5 5 0 5
M M

Antiferromagnetic transverse field gives
the system more “room to spread”

(1) TA, arXiv:1811.09980.

(S, M|Ey(s))
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A Geometrically Local Example
H(s) = —(1—s) Zaf + as(1 — s) Z 0; 05 + % Z Jijo;o;
i (4,5) (3,7)

|dentical ferromagnetic rings, coupled at their ends

N N e T
N’ ‘6\_6/3 6\_6_6/3
N N e T
N N . S N e e S

(1) TA, arXiv:1811.09980.



A Geometrically Local Example

H(s) = —(1 —s) Zaf + as(1 — s) Z 0;:-”0;“ + g Z Jq;jafaf
? (1,7) (1,7)

10-4 a=20
> o= —
107 |

8 10 1I2 1I4 1I6 1I8 20
n
Exponential scaling of the gap for a = 0, —1,
but looks like polynomial scaling for o =1

(1) TA, arXiv:1811.09980.



Beyond Standard QA Recap

More exotic interactions open up
unexplored parameter spaces for QA

Catalyst Hamiltonians

H. =« Z 0; 05
(i,5)

Beyond 2-body Ising Hamiltonions

zZ z z Z Z zZ zZ

New annealing protocols like
‘reverse annealing’ (1-3)

(1) A. Perdomo-Ortiz et al., QIP 10, 33 (2011).
(2) M. Ohkuwa et al., Phys. Rev. A 98, 022314 (2018)
(3) D. Venturelli and A. Kondratyev, arXiv:1810.08584.



Conclusions

Most of our analysis has been restricted to ‘trivial’
computational problems, where analytic/numerical
progress can be made.

Will this translate to real world advantages”?
s QA doomed? |s ending on a classical Hamiltonian the problem?
Will we need to adopt universal AQC to see an advantage?

We may be in a situation where the only way to find out
IS to build such devices and try.

We are living in exciting times;
guantum information processing devices are coming online,
albeit noisy ones, and we have the opportunity to ask:
what can do we do with such guantum computing devices?



