
Applying quantum algorithms to constraint
satisfaction problems

Ashley Montanaro

Joint work with Earl Campbell (University of Sheffield) and
Ankur Khurana (University of Bristol)

School of Mathematics,
University of Bristol

26 November 2018

arXiv:1810.05582



Introduction

There are quite a lot of quantum algorithms . . .

. . . but few cases where a substantial speedup has been
calculated in detail for a practically relevant problem.

Some fully worked-out applications with large speedups:

Nitrogen fixation [Reiher et al ’17]

Many-body localisation [Childs et al ’17]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al ’18]

Integer factorisation [Kutin ’06]

But what if we don’t care about cryptography or simulation of
quantum systems?



Introduction

There are quite a lot of quantum algorithms . . .

. . . but few cases where a substantial speedup has been
calculated in detail for a practically relevant problem.

Some fully worked-out applications with large speedups:

Nitrogen fixation [Reiher et al ’17]

Many-body localisation [Childs et al ’17]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al ’18]

Integer factorisation [Kutin ’06]

But what if we don’t care about cryptography or simulation of
quantum systems?



Introduction

There are quite a lot of quantum algorithms . . .

. . . but few cases where a substantial speedup has been
calculated in detail for a practically relevant problem.

Some fully worked-out applications with large speedups:

Nitrogen fixation [Reiher et al ’17]

Many-body localisation [Childs et al ’17]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al ’18]

Integer factorisation [Kutin ’06]

But what if we don’t care about cryptography or simulation of
quantum systems?



Introduction

There are quite a lot of quantum algorithms . . .

. . . but few cases where a substantial speedup has been
calculated in detail for a practically relevant problem.

Some fully worked-out applications with large speedups:

Nitrogen fixation [Reiher et al ’17]

Many-body localisation [Childs et al ’17]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al ’18]

Integer factorisation [Kutin ’06]

But what if we don’t care about cryptography or simulation of
quantum systems?



General applications

Question
Can we find a truly general-interest application of quantum
computers?

Desiderata:

1 There should be a quantum algorithm with provable
correctness and performance bounds.

2 It should solve a problem that (many) people care about
in a reasonable time (e.g. < 1 day).

3 We should compare it against the best classical algorithms
running on real hardware.



General applications

Question
Can we find a truly general-interest application of quantum
computers?

Desiderata:

1 There should be a quantum algorithm with provable
correctness and performance bounds.

2 It should solve a problem that (many) people care about
in a reasonable time (e.g. < 1 day).

3 We should compare it against the best classical algorithms
running on real hardware.



General applications

Question
Can we find a truly general-interest application of quantum
computers?

Desiderata:

1 There should be a quantum algorithm with provable
correctness and performance bounds.

2 It should solve a problem that (many) people care about
in a reasonable time (e.g. < 1 day).

3 We should compare it against the best classical algorithms
running on real hardware.



General applications

Question
Can we find a truly general-interest application of quantum
computers?

Desiderata:

1 There should be a quantum algorithm with provable
correctness and performance bounds.

2 It should solve a problem that (many) people care about
in a reasonable time (e.g. < 1 day).

3 We should compare it against the best classical algorithms
running on real hardware.



Two applications: k-SAT and graph
k-colouring

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .



Two applications: k-SAT and graph
k-colouring

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .



Two applications: k-SAT and graph
k-colouring

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .



Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).



Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).



Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).



Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).



Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).



Colouring by backtracking



Colouring by backtracking



Colouring by backtracking



Colouring by backtracking



Colouring by backtracking



Colouring by backtracking



Colouring by backtracking



Cost model

We work out the runtime and space usage of quantum
algorithms based on the use of the surface code [Fowler et al ’12]
for quantum error-correction.

We then convert this to real-world runtimes based on various
regimes corresponding to different parameters for
quantum-computing hardware:

Parameter Realistic Plausible Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Gate error rate 10−3 10−4 10−5

“Realistic” is (approximately) achievable today; other two
columns represent order-of-magnitude improvements.



Cost model

We work out the runtime and space usage of quantum
algorithms based on the use of the surface code [Fowler et al ’12]
for quantum error-correction.

We then convert this to real-world runtimes based on various
regimes corresponding to different parameters for
quantum-computing hardware:

Parameter Realistic Plausible Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Gate error rate 10−3 10−4 10−5

“Realistic” is (approximately) achievable today; other two
columns represent order-of-magnitude improvements.



Cost model

We work out the runtime and space usage of quantum
algorithms based on the use of the surface code [Fowler et al ’12]
for quantum error-correction.

We then convert this to real-world runtimes based on various
regimes corresponding to different parameters for
quantum-computing hardware:

Parameter Realistic Plausible Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Gate error rate 10−3 10−4 10−5

“Realistic” is (approximately) achievable today; other two
columns represent order-of-magnitude improvements.



Cost model

To understand the cost of implementing a quantum circuit
fault-tolerantly, it helps to split it into Clifford gates (easy)
and T gates or Toffoli gates (hard).

We assume that Clifford gates are free and T/Toffoli gates
can be implemented in time equal to the cost of one
measurement.

This is justified by the use of time-optimal techniques
[Fowler ’12, Eastin ’13, . . . ] to prepare magic states offline and
then inject them at the cost of 1 measurement.



Cost model

To understand the cost of implementing a quantum circuit
fault-tolerantly, it helps to split it into Clifford gates (easy)
and T gates or Toffoli gates (hard).

We assume that Clifford gates are free and T/Toffoli gates
can be implemented in time equal to the cost of one
measurement.

This is justified by the use of time-optimal techniques
[Fowler ’12, Eastin ’13, . . . ] to prepare magic states offline and
then inject them at the cost of 1 measurement.



Cost model

To understand the cost of implementing a quantum circuit
fault-tolerantly, it helps to split it into Clifford gates (easy)
and T gates or Toffoli gates (hard).

We assume that Clifford gates are free and T/Toffoli gates
can be implemented in time equal to the cost of one
measurement.

This is justified by the use of time-optimal techniques
[Fowler ’12, Eastin ’13, . . . ] to prepare magic states offline and
then inject them at the cost of 1 measurement.



Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!



Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!



Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!



Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!



Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!



Summary of results (1)

Realistic Plausible Optimistic
Max n 65 72 78

T-depth 1.46× 1012 1.65× 1013 1.32× 1014

Toffoli count 4.41× 1017 5.52× 1018 4.79× 1019

Factory qubits 3.14× 1013 5.15× 1012 1.38× 1012

Speedup factor 1.62× 103 1.73× 104 1.83× 105

Table : Likely speedup factors for 14-SAT via Grover’s algorithm
achievable in different regimes. Relative to an Intel Core i7-4790S
CPU operating at 3.20GHz.



Summary of results (2)

Realistic Plausible Optimistic
Max n 55 63 72

T-depth 1.63× 1012 1.43× 1013 1.63× 1014

T/Toffoli count 4.72× 1018 4.72× 1019 6.16× 1020

Factory qubits 3.85× 1014 5.03× 1013 2.17× 1013

Speedup factor 1.50× 101 3.92× 102 1.16× 104

Table : Likely speedup factors for 12-SAT via backtracking
achievable in different regimes.



Summary of results (3)

Realistic Plausible Optimistic
Max n 113 128 144

T-depth 1.70× 1012 1.53× 1013 1.62× 1014

T/Toffoli count 8.51× 1017 1.02× 1019 1.28× 1020

Factory qubits 6.50× 1013 9.54× 1012 3.69× 1012

Speedup factor 7.25× 100 5.17× 102 4.16× 104

Table : Likely speedup factors for graph colouring via backtracking
achievable in different regimes.



Cost of classical processing

N Realistic Plausible Optimistic
1012 4.17× 107 4.30× 104 9.15× 10−1

1016 2.29× 1012 7.76× 108 2.23× 104

1020 3.10× 1016 3.07× 1013 3.28× 108

Table : Classical processing required to implement N Toffoli gates
under different regimes, based on extrapolation of runtimes
reported by [Delfosse and Nickerson ’17].

Cost measured in processor-days (where type of processor
is CPU, GPU and ASIC respectively in realistic, plausible
and optimistic regimes).

Assumes that the speedup offered by GPUs and ASICs
over CPUs is a factor of 100 and 106 respectively.



Conclusions

We might be able to achieve quite a significant quantum
speedup for common and practically relevant problems. . .

. . . but there are some major challenges to be addressed before
this becomes realistic. Improved fault-tolerance techniques
would make a big difference.

Thanks!



Conclusions

We might be able to achieve quite a significant quantum
speedup for common and practically relevant problems. . .

. . . but there are some major challenges to be addressed before
this becomes realistic. Improved fault-tolerance techniques
would make a big difference.

Thanks!



Conclusions

We might be able to achieve quite a significant quantum
speedup for common and practically relevant problems. . .

. . . but there are some major challenges to be addressed before
this becomes realistic. Improved fault-tolerance techniques
would make a big difference.

Thanks!



25 50 75 100 125 150 175 200
n

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ov
er

he
ad

1e6

Figure : The runtime (circuit depth) of the quantum algorithm for
backtracking is of the form f (n, k)

√
T, where T is the number of

nodes in the backtracking tree. Figure illustrates scaling of f (n, k)
with n when k is chosen to be the expected chromatic number of a
random graph.



10 15 20 25 30 35 40
n

10 2

10 1

100

101

102

103

M
ed

ia
n 

ru
nt

im
e 

(s
)

k=9
k=10
k=11
k=12

Figure : Runtime of the Maple LCM Dist SAT solver on random
k-SAT instances with n variables and ≈ αkn clauses, where αk is the
satisfiability threshold. Solid line represents the median of at least
100 runs, in CPU-seconds. Dashed lines are linear least-squares fits.



10 20 30 40 50 60 70
n

101

102

103

104

105

106

107

108

Tr
ee

 si
ze

Figure : Number of nodes in the DSATUR k-colourability
backtracking tree. Median (solid) and 90th percentile (dashed) over
1000 random graphs for each n ∈ {10, . . . , 75}. Dotted lines are
least-squares fits for the range n > 30.



Obtaining a quantum speedup

A prominent colouring algorithm, DSATUR, is based on the
standard backtracking procedure, with optimisations:

First find a large clique and colour it;
At each step, select the most constrained vertex to colour.

We can accelerate DSATUR using a quantum algorithm:

Theorem (informal) [AM ’15]

Let T be the number of nodes in the backtracking tree. Then
there is a bounded-error quantum algorithm which runs in
time O(

√
T poly(n)) time and outputs whether or not an

n-vertex graph is k-colourable.



Obtaining a quantum speedup

A prominent colouring algorithm, DSATUR, is based on the
standard backtracking procedure, with optimisations:

First find a large clique and colour it;
At each step, select the most constrained vertex to colour.

We can accelerate DSATUR using a quantum algorithm:

Theorem (informal) [AM ’15]

Let T be the number of nodes in the backtracking tree. Then
there is a bounded-error quantum algorithm which runs in
time O(

√
T poly(n)) time and outputs whether or not an

n-vertex graph is k-colourable.



How large a speedup is this in practice?

For simplicity, we consider the case where we know an
upper bound on T, and want to detect whether a
k-colouring exists, rather than find one.

The algorithm applies phase estimation with precision
O(1/

√
Tn) to a quantum walk in the backtracking tree.

The quantum walk alternates two operations, each
corresponding to Grover-style diffusion D among nodes
and their neighbours in the tree.

So the overall time taken by the algorithm is

CP ×
√

Tn× 2× TD

where CP 6 4 is the constant from phase estimation.



How large a speedup is this in practice?

For simplicity, we consider the case where we know an
upper bound on T, and want to detect whether a
k-colouring exists, rather than find one.

The algorithm applies phase estimation with precision
O(1/

√
Tn) to a quantum walk in the backtracking tree.

The quantum walk alternates two operations, each
corresponding to Grover-style diffusion D among nodes
and their neighbours in the tree.

So the overall time taken by the algorithm is

CP ×
√

Tn× 2× TD

where CP 6 4 is the constant from phase estimation.



How large a speedup is this in practice?

For simplicity, we consider the case where we know an
upper bound on T, and want to detect whether a
k-colouring exists, rather than find one.

The algorithm applies phase estimation with precision
O(1/

√
Tn) to a quantum walk in the backtracking tree.

The quantum walk alternates two operations, each
corresponding to Grover-style diffusion D among nodes
and their neighbours in the tree.

So the overall time taken by the algorithm is

CP ×
√

Tn× 2× TD

where CP 6 4 is the constant from phase estimation.



How large a speedup is this in practice?

For simplicity, we consider the case where we know an
upper bound on T, and want to detect whether a
k-colouring exists, rather than find one.

The algorithm applies phase estimation with precision
O(1/

√
Tn) to a quantum walk in the backtracking tree.

The quantum walk alternates two operations, each
corresponding to Grover-style diffusion D among nodes
and their neighbours in the tree.

So the overall time taken by the algorithm is

CP ×
√

Tn× 2× TD

where CP 6 4 is the constant from phase estimation.



Working out TD

The time taken by this part of the algorithm is dominated by
two classical operations:

1 Determine if a partial colouring is valid;
2 Find the most constrained uncoloured vertex in the graph.

We can find low-depth quantum circuits for each of these
using, e.g., efficient quantum circuits for integer
arithmetic [Draper et al ’04].

Guiding principle: Minimise the T-depth (⇒ runtime) of
the resulting quantum circuits.

We can achieve TD 6 3200 for colouring a 6136-vertex graph.



Working out TD

The time taken by this part of the algorithm is dominated by
two classical operations:

1 Determine if a partial colouring is valid;
2 Find the most constrained uncoloured vertex in the graph.

We can find low-depth quantum circuits for each of these
using, e.g., efficient quantum circuits for integer
arithmetic [Draper et al ’04].

Guiding principle: Minimise the T-depth (⇒ runtime) of
the resulting quantum circuits.

We can achieve TD 6 3200 for colouring a 6136-vertex graph.



Working out TD

The time taken by this part of the algorithm is dominated by
two classical operations:

1 Determine if a partial colouring is valid;
2 Find the most constrained uncoloured vertex in the graph.

We can find low-depth quantum circuits for each of these
using, e.g., efficient quantum circuits for integer
arithmetic [Draper et al ’04].

Guiding principle: Minimise the T-depth (⇒ runtime) of
the resulting quantum circuits.

We can achieve TD 6 3200 for colouring a 6136-vertex graph.



Working out TD

The time taken by this part of the algorithm is dominated by
two classical operations:

1 Determine if a partial colouring is valid;
2 Find the most constrained uncoloured vertex in the graph.

We can find low-depth quantum circuits for each of these
using, e.g., efficient quantum circuits for integer
arithmetic [Draper et al ’04].

Guiding principle: Minimise the T-depth (⇒ runtime) of
the resulting quantum circuits.

We can achieve TD 6 3200 for colouring a 6136-vertex graph.




