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Introduction

There are quite a lot of quantum algorithms . . .

. . . but few cases where a substantial speedup has been
calculated in detail for a practically relevant problem.

Some fully worked-out applications with large speedups:

Nitrogen fixation [Reiher et al ’17]

Many-body localisation [Childs et al ’17]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al ’18]

Integer factorisation [Kutin ’06]

But what if we don’t care about cryptography or simulation of
quantum systems?
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General applications

Question
Can we find a truly general-interest application of quantum
computers?

Desiderata:

1 There should be a quantum algorithm with provable
correctness and performance bounds.

2 It should solve a problem that (many) people care about
in a reasonable time (e.g. < 1 day).

3 We should compare it against the best classical algorithms
running on real hardware.
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Two applications: k-SAT and graph
k-colouring

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .
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Our results

1 We applied quantum algorithms (Grover’s algorithm and
a quantum approach for accelerating backtracking
algorithms [AM ’18]) to SAT and graph colouring.

2 We optimised the time complexity (circuit depth) of the
algorithms.

3 We estimated their likely runtimes when applied to
random instances.

4 We calculated the actual runtimes and other complexity
measures, for various hardware parameter regimes.

5 We compared against the likely performance of leading
classical algorithms (Maple LCM Dist and DSATUR).
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Cost model

We work out the runtime and space usage of quantum
algorithms based on the use of the surface code [Fowler et al ’12]
for quantum error-correction.

We then convert this to real-world runtimes based on various
regimes corresponding to different parameters for
quantum-computing hardware:

Parameter Realistic Plausible Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Gate error rate 10−3 10−4 10−5

“Realistic” is (approximately) achievable today; other two
columns represent order-of-magnitude improvements.
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Cost model

To understand the cost of implementing a quantum circuit
fault-tolerantly, it helps to split it into Clifford gates (easy)
and T gates or Toffoli gates (hard).

We assume that Clifford gates are free and T/Toffoli gates
can be implemented in time equal to the cost of one
measurement.

This is justified by the use of time-optimal techniques
[Fowler ’12, Eastin ’13, . . . ] to prepare magic states offline and
then inject them at the cost of 1 measurement.
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Summary of results: good and bad news

In the most optimistic hardware parameter regime, we
could see speedup factors of > 105 (compared with a
standard desktop PC) for k-SAT (via Grover’s algorithm)
and > 104 for graph colouring (via backtracking).

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!
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Summary of results (1)

Realistic Plausible Optimistic
Max n 65 72 78

T-depth 1.46× 1012 1.65× 1013 1.32× 1014

Toffoli count 4.41× 1017 5.52× 1018 4.79× 1019

Factory qubits 3.14× 1013 5.15× 1012 1.38× 1012

Speedup factor 1.62× 103 1.73× 104 1.83× 105

Table : Likely speedup factors for 14-SAT via Grover’s algorithm
achievable in different regimes. Relative to an Intel Core i7-4790S
CPU operating at 3.20GHz.



Summary of results (2)

Realistic Plausible Optimistic
Max n 55 63 72

T-depth 1.63× 1012 1.43× 1013 1.63× 1014

T/Toffoli count 4.72× 1018 4.72× 1019 6.16× 1020

Factory qubits 3.85× 1014 5.03× 1013 2.17× 1013

Speedup factor 1.50× 101 3.92× 102 1.16× 104

Table : Likely speedup factors for 12-SAT via backtracking
achievable in different regimes.



Summary of results (3)

Realistic Plausible Optimistic
Max n 113 128 144

T-depth 1.70× 1012 1.53× 1013 1.62× 1014

T/Toffoli count 8.51× 1017 1.02× 1019 1.28× 1020

Factory qubits 6.50× 1013 9.54× 1012 3.69× 1012

Speedup factor 7.25× 100 5.17× 102 4.16× 104

Table : Likely speedup factors for graph colouring via backtracking
achievable in different regimes.



Cost of classical processing

N Realistic Plausible Optimistic
1012 4.17× 107 4.30× 104 9.15× 10−1

1016 2.29× 1012 7.76× 108 2.23× 104

1020 3.10× 1016 3.07× 1013 3.28× 108

Table : Classical processing required to implement N Toffoli gates
under different regimes, based on extrapolation of runtimes
reported by [Delfosse and Nickerson ’17].

Cost measured in processor-days (where type of processor
is CPU, GPU and ASIC respectively in realistic, plausible
and optimistic regimes).

Assumes that the speedup offered by GPUs and ASICs
over CPUs is a factor of 100 and 106 respectively.



Conclusions

We might be able to achieve quite a significant quantum
speedup for common and practically relevant problems. . .

. . . but there are some major challenges to be addressed before
this becomes realistic. Improved fault-tolerance techniques
would make a big difference.

Thanks!
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Figure : The runtime (circuit depth) of the quantum algorithm for
backtracking is of the form f (n, k)

√
T, where T is the number of

nodes in the backtracking tree. Figure illustrates scaling of f (n, k)
with n when k is chosen to be the expected chromatic number of a
random graph.
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Figure : Runtime of the Maple LCM Dist SAT solver on random
k-SAT instances with n variables and ≈ αkn clauses, where αk is the
satisfiability threshold. Solid line represents the median of at least
100 runs, in CPU-seconds. Dashed lines are linear least-squares fits.
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Figure : Number of nodes in the DSATUR k-colourability
backtracking tree. Median (solid) and 90th percentile (dashed) over
1000 random graphs for each n ∈ {10, . . . , 75}. Dotted lines are
least-squares fits for the range n > 30.



Obtaining a quantum speedup

A prominent colouring algorithm, DSATUR, is based on the
standard backtracking procedure, with optimisations:

First find a large clique and colour it;
At each step, select the most constrained vertex to colour.

We can accelerate DSATUR using a quantum algorithm:

Theorem (informal) [AM ’15]

Let T be the number of nodes in the backtracking tree. Then
there is a bounded-error quantum algorithm which runs in
time O(

√
T poly(n)) time and outputs whether or not an

n-vertex graph is k-colourable.
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How large a speedup is this in practice?

For simplicity, we consider the case where we know an
upper bound on T, and want to detect whether a
k-colouring exists, rather than find one.

The algorithm applies phase estimation with precision
O(1/

√
Tn) to a quantum walk in the backtracking tree.

The quantum walk alternates two operations, each
corresponding to Grover-style diffusion D among nodes
and their neighbours in the tree.

So the overall time taken by the algorithm is

CP ×
√

Tn× 2× TD

where CP 6 4 is the constant from phase estimation.
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Working out TD

The time taken by this part of the algorithm is dominated by
two classical operations:

1 Determine if a partial colouring is valid;
2 Find the most constrained uncoloured vertex in the graph.

We can find low-depth quantum circuits for each of these
using, e.g., efficient quantum circuits for integer
arithmetic [Draper et al ’04].

Guiding principle: Minimise the T-depth (⇒ runtime) of
the resulting quantum circuits.

We can achieve TD 6 3200 for colouring a 6136-vertex graph.
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